【題目】如圖,在正方形ABCD中,點E在邊CD上(不與點C,D重合),連接AE,BD交于點F.
(1)若點E為CD中點,AB=2,求AF的長.
(2)若∠AFB=2,求
的值.
(3)若點G在線段BF上,且GF=2BG,連接AG,CG,設=x,四邊形AGCE的面積為
,
ABG的面積為
,求
的最大值.
【答案】(1);(2)
;(3)
.
【解析】
(1)由可得DE的長,利用勾股定理可得AE的長,又易證
,由相似三角形的性質可得
,求解即可得;
(2)如圖(見解析),連接AC與BD交于點O,由正方形的性質可知,,
,設
,在
中,
可求出
,從而可得DF和BF的長,即可得出答案;
(3)設正方形的邊長,可得DE、AO、BO、BD的長,由
可得BF的長,又根據
可得BG的長,從而可得
的面積
,用正方形的面積減去三個三角形的面積可得四邊形AGCE的面積
,再利用二次函數的性質求解
的最大值.
(1)為CD中點,
,
,即
又
;
(2)如圖,連接AC與BD交于點O
由正方形的性質得,
設
在中,
,
;
(3)設正方形的邊長,則
由(1)知,
又
又
又
由二次函數圖象的性質得:當時,
有最大值,最大值為
.
科目:初中數學 來源: 題型:
【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的一半,則這個矩形是給定矩形的“減半”矩形.如圖矩形是矩形ABCD的“減半”矩形.
請你解決下列問題:
(1)當矩形的長和寬分別為1,2時,它是否存在“減半”矩形?請作出判斷,并請說明理由;
(2)邊長為的正方形存在“減半”正方形嗎?如果存在,求出“減半”正方形的邊長;如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線(b,c為常數)的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料,解決問題:
材料1:在研究數的整除時發現:能被5、25、125、625整除的數的特征是:分別看這個數的末一位、末兩位、末三位、末四位即可,推廣成一條結論;末位能被
整除的數,本身必能被
整除,反過來,末
位不能被
整除的數,本身也不可能被
整除,例如判斷992250能否被25、625整除時,可按下列步驟計算:
,
為整數,
能被25整除
,
不為整數,
不能被625整除
材料2:用奇偶位差法判斷一個數能否被11這個數整除時,可把這個數的奇位上的數字與偶位上的數字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數能被11整除,反之則不能.
(1)若這個三位數能被11整除,則
;在該三位數末尾加上和為8的兩個數字,讓其成為一個五位數,該五位數仍能被11整除,求這個五位數
(2)若一個六位數p的最高位數字為5,千位數字是個位數字的2倍,且這個數既能被125整除,又能被11整除,求這個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湘潭市繼2017年成功創建全國文明城市之后,又準備爭創全國衛生城市.某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當AE=8時,求EF的長;
(2)設AE=x,矩形EFPQ的面積為y.
①求y與x的函數關系式;
②當x為何值時,y有最大值,最大值是多少?
(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數關系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y= x2-4x+3.
(1)把這個二次函數化成的形式并寫出拋物線的頂點坐標;
(2)畫出這個二次函數的圖象,并利用圖象直接寫出當y>0時,x的取值范圍. 當x取何值時,y隨x的增大而減。
(3)若拋物線與軸的交點記為A,B,該圖象上存在一點C,且△ABC的面積為3,求點C的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com