分析 (1)過M作MQ⊥AB于Q,MP⊥AD于P,則∠PMQ=90°,∠MQN=∠MPD=90°,根據ASA即可判定△MDP≌△MNQ,進而根據全等三角形的性質得出DM=MN;
(2)過M作MS⊥AB于S,MW⊥AD于W,則∠WMS=90°,根據∠DMW=∠NMS,∠MSN=∠MWD=90°,判定△MDW∽MNS,得出MD:MN=MW:MS=MW:WA,再根據△AWM∽△ADC,DC=2AD,即可得出MD:MN=MW:WA=CD:DA=2;
(3)過M作MX⊥AB于X,MR⊥AD于R,則易得△NMX∽△DMR,得出MD:MN=MR:MX=AX:MX,再由AD∥MX,CD∥AX,易得△AMX∽△CAD,得出AX:MX=CD:AD,最后根據CD=nAD,即可得出MD:MN=CD:AD=n.
解答 解:(1)證明:過M作MQ⊥AB于Q,MP⊥AD于P,則∠PMQ=90°,∠MQN=∠MPD=90°,
∵∠DMN=90°,
∴∠DMP=∠NMQ,
∵ABCD是正方形,
∴AC平分∠DAB,
∴PM=MQ,
在△MDP和△MNQ中,
$\left\{\begin{array}{l}{∠MQN=∠MPD}\\{PM=MQ}\\{∠DMP=∠NMQ}\end{array}\right.$,
∴△MDP≌△MNQ(ASA),
∴DM=MN;
(2)過M作MS⊥AB于S,MW⊥AD于W,則∠WMS=90°,
∵MN⊥DM,
∴∠DMW=∠NMS,
又∵∠MSN=∠MWD=90°,
∴△MDW∽MNS,
∴MD:MN=MW:MS=MW:WA,
∵MW∥CD,
∴∠AMW=∠ACD,∠AWM=∠ADC,
∴△AWM∽△ADC,
又∵DC=2AD,
∴MD:MN=MW:WA=CD:DA=2;
(3)MD:MN=n,
理由:過M作MX⊥AB于X,MR⊥AD于R,則易得△NMX∽△DMR,
∴MD:MN=MR:MX=AX:MX,
由AD∥MX,CD∥AX,易得△AMX∽△CAD,
∴AX:MX=CD:AD,
又∵CD=nAD,
∴MD:MN=CD:AD=n.
點評 本題屬于相似形綜合題,主要考查了相似三角形的判定與性質,全等三角形的判定與性質以及正方形、矩形的性質的綜合應用,解決問題的關鍵是作輔助線構造全等三角形或相似三角形,運用相似三角形和全等三角形的性質進行推導即可.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com