分析 (1)根據AAS即可證明△ABE≌△AFE;
(2)根據全等三角形的性質和平行四邊形的性質得到∠AFE=∠ADC,在由等式的性質即可得到∠FAD=∠CDE,然后根據三角形的內角和即可得到結論.
解答 證明:∵EA是∠BAF的角平分線,
∴∠BAE=∠FAE,
在△ABE和△AFE中,
$\left\{\begin{array}{l}{∠B=∠AFE}\\{∠BAE=∠FAE}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△AFE;
(2)∵AB=CD,AB∥CD,
∴四邊形ABCD是平行四邊形,
∴∠B=∠ADC,
∵△ABE≌△AFE,
∴∠B=∠AFE,
∴∠AFE=∠ADC,
∵∠FAD=∠AFE-∠ADF,∠CDE=∠ADC-∠ADF,
∴∠FAD=∠CDE,
∵∠ADE=∠DEC,
∴∠AFD=180°-∠ADF-∠DAF,∠DCE=180°-∠DEC-∠EDC,
∴∠AFD=∠C.
點評 本題考查了平行四邊形的判定與性質、全等三角形的判定與性質以及三角形內角和定理,熟練掌握平行四邊形的判定與性質以及靈活運用三角形外角關系是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com