【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點E為CD的中點,射線BE交AD的延長線于點F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長.
科目:初中數學 來源: 題型:
【題目】如圖所示,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中能使得BC=R的有________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個四位數,記千位上和百位上的數字之和為,十位上和個位上的數字之和為
,如果
,那么稱這個四位數為“和平數”.
例如:1423,,
,因為
,所以1423是“和平數”.
(1)直接寫出:最小的“和平數”是 ,最大的“和平數”是 ;
(2)將一個“和平數”的個位上與十位上的數字交換位置,同時,將百位上與千位上的數字交換位置,稱交換前后的這兩個“和平數”為一組“相關和平數”.
例如:1423與4132為一組“相關和平數”
求證:任意的一組“相關和平數”之和是1111的倍數.
(3)求個位上的數字是千位上的數字的兩倍且百位上的數字與十位上的數字之和是12的倍數的所有“和平數”;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.
⑴求圖中陰影部分的面積;
⑵若用陰影扇形OBD圍成一個圓錐側面,請求出這個圓錐底面圓的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高節水意識,小申隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:升)
(1)求這7天內小申家每天用水量的平均數和中位數;
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)若規定居民生活用水收費標準為2.80元/立方米,請你估算小申家一個月(按30天計算)的水費是多少元?(1立方米=1000升)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題正確的有( 。
①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半;
②三角形至少有一個內角不大于60°;
③連結任意四邊形各邊中點形成的新四邊形是平行四邊形;
④十邊形內角和為1800°.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABC0位于直角坐標平面,O為原點,A、C分別在坐標軸上,B的坐標為(8,6),線段BC上有一動點P,已知點D在第一象限.
(1)D是直線y=2x+6上一點,若△APD是等腰直角三角形,求點D的坐標;
(2)D是直線y=2x﹣6上一點,若△APD是等腰直角三角形.求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知△ABC中,CA=CB,CD⊥AB于D點,點M為線段AC上一動點,線段MN交DC于點N,且∠BAC=2∠CMN,過點C作CE⊥MN交MN延長線于點E,交線段AB于點F,探索的值.
(1)若∠ACB=90°,點M與點A重合(如圖1)時:①線段CE與EF之間的數量關系是 ;②= ;
(2)在(1)的條件下,若點M不與點A重合(如圖2),請猜想寫出的值,并證明你的猜想
(3)若∠ACB≠90°,∠CAB=,其他條件不變,請直接寫出
的值(用含有
的式子表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com