【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
求證:
(1)D是BC的中點;
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。
【答案】
(1)解:∵AB是⊙O的直徑,∴∠ADB=90°
即AD是底邊BC上的高.
又∵AB=AC,∴△ABC是等腰三角形, ∴D是BC的中點
(2)解:∵∠CBE與∠CAD是同弧所對的圓周角,∴ ∠CBE=∠CAD.
又∵ ∠BCE=∠ACD,∴△BEC∽△ADC;
(3)解:由△BEC∽△ADC得: ,
即CD·BC=AC·CE.
∵D是BC的中點,∴CD= BC.
又 ∵AB=AC,∴CD·BC=AC·CE= BC·BC=AB·CE
即BC =2AB·CE=12
∴AB=6
∴⊙O的半徑為3
【解析】(1)由AB是⊙O的直徑,得到AD是底邊BC上的高,根據等腰三角形的三線合一得到D是BC的中點;(2)根據圓周角定理可知∠CBE與∠CAD是同弧所對的圓周角,得到∠CBE=∠CAD,根據兩角對應相等兩三角形相似,得到△BEC∽△ADC;(3)由△BEC∽△ADC,得到比例,再由D是BC的中點,根據切線長定理求出AB的長,得到⊙O的半徑的值.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的頂點D的坐標為(1,﹣4),與y軸交于點C(0,﹣3),與x軸交于A、B兩點.
(1)求該拋物線的函數關系式;
(2)在拋物線上存在點P(不與點D重合),使得S△PAB=S△ABD , 請求出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進甲,乙兩種商品,若購買6件甲商品和3件乙商品共用108元;若購買5件甲商品和2件乙商品共用88元.
(1)求甲,乙兩種商品每件的價格;
(2)已知該商店購買乙商品的件數比購買甲商品的件數多8件,如果需要購買甲,乙兩種商品的總件數不少于32件,且商店購買的甲、乙兩種商品的總費用不超過292元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 (
是常數).
(1)求證:不論 為何值,該函數的圖象與x軸沒有公共點;
(2)把該函數的圖象沿 軸向下平移多少個單位長度后,得到的函數的圖象與
軸只有一個公共點?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD∥AB,點O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°.
(1)求∠DOE的度數;
(2)OF平分∠AOD嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現錯誤?請寫出該步的序號________.
(2)錯誤原因為________.
(3)本題正確結論是什么,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為使高一新生入校后及時穿上合身的校服,現提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據調查結果繪制了如圖兩個不完整的統計圖(校服型號以身高作為標準,共分為6個型號):
根據以上信息,解答下列問題:
(1)該班共有 名學生;
(2)補全條形統計圖;
(3)該班學生所穿校服型號的眾數為 ,中位數為 ;
(4)如果該校預計招收新生1500名,根據樣本數據,估計新生穿170型校服的學生大約有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com