【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標;
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.
【答案】(1)y=x2﹣2x﹣3;(2)M(﹣,﹣
);(3)存在以點B,C,Q,P為頂點的四邊形是平行四邊形,P的坐標為(1+
,3)或(1﹣
,3)或(2,﹣3).
【解析】
(1)把A,B,C的坐標代入拋物線解析式求出a,b,c的值即可;
(2)由題意得到直線BC與直線AM垂直,求出直線BC解析式,確定出直線AM中k的值,利用待定系數(shù)法求出直線AM解析式,聯(lián)立求出M坐標即可;
(3)存在以點B,C,Q,P為頂點的四邊形是平行四邊形,分兩種情況,利用平移規(guī)律確定出P的坐標即可.
(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入拋物線解析式得:,
解得:,
則該拋物線解析式為y=x2﹣2x﹣3;
(2)設直線BC解析式為y=kx﹣3,
把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,
∴直線BC解析式為y=﹣3x﹣3,
∴直線AM解析式為y=x+m,
把A(3,0)代入得:1+m=0,即m=﹣1,
∴直線AM解析式為y=x﹣1,
聯(lián)立得:,
解得:,
則M(﹣,﹣
);
(3)存在以點B,C,Q,P為頂點的四邊形是平行四邊形,
分兩種情況考慮:
設Q(x,0),P(m,m2﹣2m﹣3),
當四邊形BCQP為平行四邊形時,由B(﹣1,0),C(0,﹣3),
根據(jù)平移規(guī)律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,
解得:m=1±,x=2±
,
當m=1+時,m2﹣2m﹣3=8+2
﹣2﹣2
﹣3=3,即P(1+
,3);
當m=1﹣時,m2﹣2m﹣3=8﹣2
﹣2+2
﹣3=3,即P(1﹣
,3);
當四邊形BCPQ為平行四邊形時,由B(﹣1,0),C(0,﹣3),
根據(jù)平移規(guī)律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0,
解得:m=0或2,
當m=0時,P(0,﹣3)(舍去);當m=2時,P(2,﹣3),
綜上,存在以點B,C,Q,P為頂點的四邊形是平行四邊形,P的坐標為(1+,3)或(1﹣
,3)或(2,﹣3).
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB是銳角,點D在射線BC上運動,連接AD,將線段AD繞點A逆時針旋轉90°,得到AE,連接EC.
(1)操作發(fā)現(xiàn):若AB=AC,∠BAC=90°,當D在線段BC上時(不與點B重合),如圖①所示,請你直接寫出線段CE和BD的位置關系和數(shù)量關系是 , ;
(2)猜想論證:
在(1)的條件下,當D在線段BC的延長線上時,如圖②所示,請你判斷(1)中結論是否成立,并證明你的判斷.
(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點D在線段BC上運動,試探究:當銳角∠ACB等于 度時,線段CE和BD之間的位置關系仍成立(點C、E重合除外)?此時若作DF⊥AD交線段CE于點F,且當AC=3時,請直接寫出線段CF的長的最大值是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中、
分別表示甲、乙兩人到B地的距離y(km)與甲出發(fā)時間x(h)的函數(shù)關系圖象.
(1)根據(jù)圖象,求乙的行駛速度.
(2)解釋交點A的實際意義.
(3)求甲出發(fā)多少時間,兩人之間恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展研學旅行活動,準備去的研學基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位學生只能選去一個地方,王老師對本全體同學選取的研學基地情況進行調查統(tǒng)計,繪制了兩幅不完整的統(tǒng)計圖(如圖所示).
(1)求該班的總入數(shù),并補全條形統(tǒng)計圖.
(2)求D(泗水)所在扇形的圓心角度數(shù);
(3)該班班委4人中,1人選去曲阜,2人選去梁山,1人選去汶上,王老師要從這4人中隨機抽取2人了解他們對研學基地的看法,請你用列表或畫樹狀圖的方法,求所抽取的2人中恰好有1人選去曲阜,1人選去梁山的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在等腰直角△ABC中,∠BAC=90°,點D從點B出發(fā)沿射線BC方向移動.在AD右側以AD為腰作等腰直角△ADE,∠DAE=90°.連接CE.
(1)求證:△ACE≌△ABD;
(2)點D在移動過程中,請猜想CE,CD,DE之間的數(shù)量關系,并說明理由;
(3)若AC=,當CD=1時,結合圖形,請直接寫出DE的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校計劃在如圖所示的空地 ABCD 上種植草皮,經測量∠ADC=90°,CD = 6m ,AD = 8m , AB=26m , BC= 24m .
(1)求出空地 ABCD 的面積;
(2)若每種植 1 平方米草皮需要 200 元,問總共需投入多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx與x軸分別交于原點O和點F(10,0),與對稱軸l交于點E(5,5).矩形ABCD的邊AB在x軸正半軸上,且AB=1,邊AD,BC與拋物線分別交于點M,N.當矩形ABCD沿x軸正方向平移,點M,N位于對稱軸l的同側時,連接MN,此時,四邊形ABNM的面積記為S;點M,N位于對稱軸l的兩側時,連接EM,EN,此時五邊形ABNEM的面積記為S.將點A與點O重合的位置作為矩形ABCD平移的起點,設矩形ABCD平移的長度為t(0≤t≤5).
(1)求出這條拋物線的表達式;
(2)當t=0時,求S△OBN的值;
(3)當矩形ABCD沿著x軸的正方向平移時,求S關于t(0<t≤5)的函數(shù)表達式,并求出t為何值時,S有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,點O是AC邊上的一點,連接BO交AD于點F,OE⊥OB交BC邊于點E.
(1)試說明:△ABF∽△COE.
(2)如圖(2),當O為AC邊的中點,且時,求
的值.
(3)當O為AC邊的中點,時,請直接寫出
的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com