【題目】探究:
(1)如圖1,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,連結BD、CE.請寫出圖1中所有全等的三角形: (不添加字母).
(2)如圖2,已知△ABC,AB=AC,∠BAC=90°,是過A點的直線,CN⊥
,BM⊥
,垂足為N、M.求證:△ABM≌△CAN.
解決問題:
(3)如圖3,已知△ABC,AB=AC,∠BAC=90°,D在邊BC上,DA=DE,∠ADE =90°.
求證:AC⊥CE.
【答案】(1)△ABD≌△ACE;(2)見詳解;(3)見詳解.
【解析】
(1)由∠DAB+∠BAE=∠BAE+∠EAC=90°,得到∠DAB=∠EAC,然后結合AB=AC,AD=AE,即可證明△ABD≌△ACE;
(2)由同角的余角相等,得到∠BAM=∠CAN,結合條件AB=AC,∠AMB=∠ANC=90°,即可證明△ABM≌△CAN;
(3)作AH⊥BC于H,EG⊥BC于G,由△ABC是等腰直角三角形,則AH=BH=CH,由∠DAH=∠EDG,得到△ADH≌△DEG,則DG=AH=CH,DH=EG,則DH+HG=HG+GC,得到EG=CG,則得到∠ECG=45°,則∠ACE=90°,即可得到結論成立.
證明:(1)∵∠DAB+∠BAE=∠DAE=90°,∠BAE+∠CAE=∠BAC=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
故答案為:△ABD≌△ACE;
(2)∵∠CAN+∠ACN=90°,∠CAN+∠BAM=90°,
∴∠ACN=∠BAM,
在△ABM和△CAN中,
,
∴△ABM≌△CAN(AAS);
(3)如圖:作AH⊥BC于H,EG⊥BC于G,則∠AHD=∠DGE=90°,
∵△ABC是等腰直角三角形,
∴AH=BH=CH,∠ACB=45°,
∵∠ADH+∠DAH=∠ADH+∠EDG=90°,
∴∠DAH=∠EDG,
∵AD=DE,
∴△ADH≌△DEG,
∴DG=AH=CH,DH=EG,
∵DH+HG=HG+GC,
∴DH=CG=EG,
∴△CEG是等腰直角三角形,
∴∠ECG=45°,
∴∠ACE=∠ACB+∠ECG=45°+45°=90°,
∴AC⊥CE.
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里有4個標有1,2,3,4的小球,它們的形狀、大小完全相同.小明從布袋里隨機取出一個小球,記下數字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)小明和小紅約定做一個游戲,其規則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個游戲公平嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】科技館是少年兒童節假日游玩的樂園.
如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經過的時間(分鐘),縱坐標y表示到達科技館的總人數.圖中曲線對應的函數解析式為y=,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應的函數解析式;
(2)為保證科技館內游客的游玩質量,館內人數不超過684人,后來的人在館外休息區等待.從10:30開始到12:00館內陸續有人離館,平均每分鐘離館4人,直到館內人數減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, AB=CB, BD=BE, ∠ABC=∠DBE=a.
(1)當a=60°, 如圖①則,∠DPE的度數______________
(2)若△BDE繞點B旋轉一定角度,如圖②所示,求∠DPE(用a表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個有理數與無理數的和為無理數,任意一個不為零的有理數與一個無理數的積為無理數,而零與無理數的積為零.由此可得:如果mx+n=0,其中m、n為有理數,x為無理數,那么m=0且n=0.
(1)如果,其中a、b為有理數,那么a= ,b= .
(2)如果,其中a、b為有理數,求a+2b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在北海市創建全國文明城活動中,需要30名志愿者擔任“講文明樹新風”公益廣告宣傳工作,其中男生18人,女生12人.
(1)若從這30人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準備以游戲的方式決定由誰擔任,游戲規則如下:將四張牌面數字分別為2,3,4,5的撲克牌洗勻后,數字朝下放于桌面,從中任取2張,若牌面數字之和為偶數,則甲擔任,否則乙擔任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店欲購進一批跳繩,若購進種跳繩
根和
種跳繩
根,則共需
元;若購進
種跳繩
根和
種跳繩
根,則共需
元.
(1)求、
兩種跳繩的單價各是多少?
(2)若該商店準備購進這兩種跳繩共根,且
種跳繩的數量不少于跳繩總數量的
.若每根
種、
種跳繩的售價分別為
元、
元,問:該商店應如何進貨才可獲取最大利潤,并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐標系中描出各點,畫出△ABC.
(2)求△ABC的面積;
(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com