【題目】1930年,德國漢堡大學的學生考拉茲,曾經提出過這樣一個數學猜想:對于每一個正整數,如果它是奇數,則對它乘3再加1;如果它是偶數,則對它除以2.如此循環,最終都能夠得到1.這一猜想后來成為著名的“考拉茲猜想”,又稱“奇偶歸一猜想”.雖然這個結論在數學上還沒有得到證明,但舉例驗證都是正確的,例如:取正整數5,最少經過下面5步運算可得1,即:如果正整數
最少經過6步運算可得到1,則
的值為__________.
科目:初中數學 來源: 題型:
【題目】已知,數軸上點在原點左邊,到原點的距離為8個單位長度,點
在原點的右邊,從點
走到點
,要經過32個單位長度.
(1)求、
兩點所對應的數;
(2)若點也是數軸上的點,點
到點
的距離是點
到原點的距離的3倍,求點
對應的數;
(3)已知,點從點
向右出發,速度為每秒1個單位長度,同時點
從點
向右出發,速度為每秒2個單位長度,若點
到點
的距離與點
到原點
距離相等,則點
到原點
距離與點
到點
的距離與值是否變化?若不變,求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.將直角尺的頂點放在P處,直角尺的兩邊分別交AB,BC于點E,F,連接EF(如圖①).
(1)當點E與點B重合時,點F恰好與點C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點P順時針旋轉,當點E和點A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠ PEF的值是否發生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點經過的路線長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)在Rt△ABC中,∠C=90°,AC=BC=1,將其放入平面直角坐標系,使A點與原點重合,AB在x軸上,△ABC沿x軸順時針無滑動的滾動,點A再次落在x軸時停止滾動,則點A經過的路線與x軸圍成圖形的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為拓寬銷售渠道,某水果商店計劃將146個柚子和400個橙子裝入大、小兩種禮箱進行出售,其中每件小禮箱裝2個柚子和4個橙子;每件大禮箱裝3個柚子和9個橙子.要求每件禮箱都裝滿,柚子恰好全部裝完,橙子有剩余,設小禮箱的數量為x件.
(1)大禮箱的數量為________件(用含x的代數式表示).
(2)若橙子剩余12個,則需要大、小兩種禮箱共多少件?
(3)由于橙子有剩余,則小禮箱至少需要________件.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐動手操作:用矩形下的折疊會出現等腰三角形,快速求BF的長.
(1)如圖,在矩形ABCD中,AB=3,AD=9,將此矩形折疊,使點D與點B重合,折痕為EF,則等腰三角形是 ;
(2)利用勾股定理建立方程,求出BF的長是多少?
(3)拓展:將此矩形折疊,使點B與DC的中點E重合,請你利用添加輔助線的方法,求AM的長;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于
、B兩點,與y軸交于點
,拋物線的對稱軸交x軸于點D.
求拋物線的解析式;
求
的值;
在拋物線的對稱軸上是否存在點P,使
是以CD為腰的等腰三角形?如果存在,直接寫出點P的坐標;如果不存在,請說明理由;
點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時線段EF最長?求出此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數軸上有六個點,點
在原點位置,點
表示的數為
,已知下表中
的含義均為前一個點所表示的數與后一個點所表示的數的差,比如
為
.
若點與點
的距離為
,則
的值為________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.
(1)CD與BE相等?若相等,請證明;若不相等,請說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com