【題目】如圖,在四邊形ABCD中,AB=AD=4,∠A=60°,BC=4 ,CD=8.
(1)求∠ADC的度數;
(2)求四邊形ABCD的面積.
【答案】
(1)解:連接BD,
∵AB=AD,∠A=60°,
∴△ABD是等邊三角形,
∴∠ADB=60°,DB=4,
∵42+82=(4 )2,
∴DB2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=60°+90°=150°
(2)解:過B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=ABsin60°=4× =2
,
∴四邊形ABCD的面積為: ADEB+
DBCD=
×4×
+
×4×8=4
+16
【解析】(1)連接BD,首先證明△ABD是等邊三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理證明△BDC是直角三角形,進而可得答案;(2)過B作BE⊥AD,利用三角形函數計算出BE長,再利用△ABD的面積加上△BDC的面積可得四邊形ABCD的面積.
【考點精析】關于本題考查的勾股定理的逆定理,需要了解如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】不能判定兩個三角形全等的條件是( )
A.三條邊對應相等B.兩條邊及其夾角對應相等
C.兩角及其中一角的對邊對應相等D.兩條邊和一條邊所對的角對應相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,FC.
(1)請判斷:FG與CE的數量關系和位置關系;(不要求證明)
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷予以證明;
(3)如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次籃球聯賽初賽階段,每隊有場比賽,每場比賽都要分出勝負,每隊勝一場得
分, 負一場得
分,積分超過
分才能獲得參賽資格.
(1)已知甲隊在初賽階段的積分為分,求甲隊初賽階段勝、負各多少場;
(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com