日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點,BP的延長線交⊙O于點Q,點R在OA的延長線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2
(3)當RA≤OA時,試確定∠B的取值范圍.

【答案】分析:(1)要證明RQ是⊙O的切線只要證明∠OQR=90°即可;
(2)先證明△BCP∽△AQP,從而得到PB•PQ=PC•PA,整理即可得到OB2=PB•PQ+OP2
(3)分別考慮當RA=OA時或與A重合時,∠B的度數,從而確定其取值范圍.
解答:證明:(1)連接OQ;
∵OB=OC,PR=RQ;
∴∠OBP=∠OQP,∠RPQ=∠RQP;
∵∠OBP+∠BPO=90°,∠BPO=∠RPQ;
∴∠OQP+∠RQP=90°;
即∠OQR=90°,
∴RQ是⊙O的切線.

證明:(2)延長AO⊙O交于點C;
∵∠BPC=∠QPA,∠BCP=∠AQP,
∴△BCP∽△AQP,
∴PB•PQ=PC•PA=(OC+OP)(OA-OP)=(OB+OP)(OB-OP)=OB2-OP2
∴OB2=PB•PQ+OP2

解:(3)當RA=OA時,∠R=30°,易得∠B=15°,當R與A重合時,∠B=45°;
∵R是OA延長線上的點,
∴R與A不重合,
∴∠B≠45°;
又∵RA≤OA,
∴∠B<45°,
∴15°≤B<45°.
點評:此題考查了學生對切線的判定及相似三角形的判定等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PA=1,試求PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點,BP的延長線交⊙O于點Q,點R在OA的延長線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2
(3)當RA≤OA時,試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,OA和OB是⊙O的半徑,且OA⊥OB,P是OA上的任意一點,BP的延長線交⊙O于D,PD的垂直平分線交OA的延長線于點C,連接CD.
(1)求證:CD是⊙O的切線;
(2)若P是OA延長線上的任意一點,其他條件不變,CD還是⊙O的切線嗎?如果是,在備用圖②中作出相應圖形(請保留作圖痕跡),并論證.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产二区精品 | 91狠狠综合 | 日韩一区二区三区在线播放 | 麻豆av在线免费观看 | 九色91在线| 国产精品一二三四区 | 丁香九月婷婷 | 国产一级一片免费播放放a 男男成人高潮片免费网站 精品视频在线观看 | 欧美www | 交换多p群乱高h文 | www.av在线| 福利视频免费观看 | 精品一区二区国产 | 成人国产网站 | 91精品国产一区二区三区 | 黄色大片免费在线观看 | 免费av一区二区 | 日韩欧美黄色片 | 色综合色综合网色综合 | 亚洲欧美在线观看 | 天堂一区二区三区 | www.在线播放| 国产黄色在线 | 婷婷综合久久 | 亚洲精品成人 | 精品亚洲国产成人av制服丝袜 | 亚洲成在线 | 成人免费高清视频 | 天堂成人在线 | 午夜一级片 | 奇米影视亚洲春色 | 97在线观看视频 | www.黄色av| 男女在线视频 | 在线免费看黄色 | 久久一区二区视频 | 国产福利小视频 | 国产三级成人 | 国产欧美一区二区精品性色超碰 | 国产午夜免费视频 | 欧美成人一区二区三区片免费 |