日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.
分析:連接OQ,由OB=OQ與RP=RQ,根據等邊對等角的性質,可得∠B=∠BQO與∠RPQ=PQR,又由OA⊥OB與對頂角相等,可得∠BQO+∠PQR=90°,即可證得直線QR是⊙O的切線.
解答:證明:連接OQ,
∵OB=OQ,
∴∠B=∠BQO,
∵PR=QR,
∴∠RPQ=∠PQR,
∵OA⊥OB,
∴∠B+∠BPO=90°,
∵∠BPO=∠RPQ=∠PQR,
∴∠BQO+∠PQR=90°,
即OQ⊥QR,
∴直線QR是⊙O的切線.
點評:此題考查了切線的判定、等腰三角形的性質以及垂直的定義.此題難度不大,解題的關鍵是掌握數形結合思想的應用,注意掌握輔助線的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PA=1,試求PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點,BP的延長線交⊙O于點Q,點R在OA的延長線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2
(3)當RA≤OA時,試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,OA和OB是⊙O的半徑,且OA⊥OB,P是OA上的任意一點,BP的延長線交⊙O于D,PD的垂直平分線交OA的延長線于點C,連接CD.
(1)求證:CD是⊙O的切線;
(2)若P是OA延長線上的任意一點,其他條件不變,CD還是⊙O的切線嗎?如果是,在備用圖②中作出相應圖形(請保留作圖痕跡),并論證.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产福利在线观看视频 | 亚洲第一精品在线 | 成人av观看 | 午夜精品久久久久久久久久久久久 | 国产精品久久久久久妇女6080 | 黄色在线免费观看 | 国产在线啪 | 国产欧美精品一区aⅴ影院 日韩精品区 | 欧美成人在线免费观看 | 欧美一区二区三区精品免费 | 91在线网址 | 成人三级在线 | av天空 | 国产 日韩 欧美 中文 在线播放 | 久久大陆 | 农村少妇kkkk7777 | 免费视频爱爱太爽了 | 国产精品久久久久国产a级 日韩在线二区 | 久久国| 日韩成人在线看 | 中文字幕日韩专区 | 成人在线播放 | 成人1区| 亚洲午夜视频在线观看 | 国产乱码精品一品二品 | 中文字幕免费在线 | 国产欧美日韩综合精品 | 成人黄网在线观看 | avav在线看 | 日韩精品一区二区三区中文在线 | 国产乱肥老妇国产一区二 | 亚洲不卡视频在线 | 麻豆一区一区三区四区 | 涩婷婷 | 亚洲三级黄 | 九九色综合 | 亚洲精品一二三区 | 成人精品视频 | 欧美午夜精品一区二区三区 | 青草av在线 | 美女久久精品 |