分析 首先證明△AOB是直角三角形,再根據S陰影部分=S△AOB-S扇形OBC計算即可.
解答 解:∵AB是⊙O的切線,
∴OB⊥AB,
∴∠OBA=90°,
∵∠A=30°,OA=8,
∴OB=$\frac{1}{2}$OA=4,AB=$\sqrt{3}$OB=4$\sqrt{3}$,∠BOC=60°,
∴S陰影部分=S△AOB-S扇形OBC=$\frac{1}{2}$×4×4$\sqrt{3}$-$\frac{60}{360}$•π•42=8$\sqrt{3}$-$\frac{8}{3}$π,
故答案為8$\sqrt{3}$-$\frac{8}{3}$π.
點評 本題考查切線的性質、扇形的面積公式、直角三角形30度角性質等知識,解題的關鍵是學會利用分割法求陰影部分面積,屬于中考常考題型.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com