分析 使△AOP為等腰三角形,只需分兩種情況考慮:OA當底邊或OA當腰.當OA是底邊時,有2個點;當OA是腰時,有8個點,即可得出答案.
解答 解:∵A(8,0),
∴OA=8,
設△AOP的邊OA上的高是h,
則$\frac{1}{2}$×8×h=16,
解得:h=4,
在x軸的兩側作直線a和直線b都和x軸平行,且到x軸的距離都等于4,如圖:
①以A為圓心,以8為半徑畫弧,交直線a和直線b分別有兩個點,即共4個點符合,
②以O為圓心,以8為半徑畫弧,交直線a和直線b分別有兩個點,即共4個點符合,
③作AO的垂直平分線分別交直線a、b于一點,即共2個點符合,
4+4+1+1=10.
滿足條件的第二象限內的點P坐標為(-4$\sqrt{3}$,4)
故答案為:(-4$\sqrt{3}$,4)
點評 此題主要考查了坐標與圖形的性質及等腰三角形的判定;對于底和腰不等的等腰三角形,若條件中沒有明確哪邊是底哪邊是腰時,應在符合三角形三邊關系的前提下分類討論.
科目:初中數學 來源:2016-2017學年四川省南充市度上學期八年級第二次月考數學試卷(解析版) 題型:解答題
化簡求值:(2x-1)2(3x+2)+(2x-1)(3x+2)2-x(1-2x)(3x+2),其中x=1.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 由$\frac{x}{6}$=2,得x=$\frac{1}{3}$ | B. | 由5x=7.得x=$\frac{5}{7}$ | ||
C. | 由5x+7=0,得5x=-7 | D. | 由2x-3=0,得2x-3+3=0 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 10°和40° | B. | 10°和50° | C. | 40°和50° | D. | 10°和60° |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com