【題目】學校實施新課程改革以來,學生的學習能力有了很大提高,陳老師為進一步了解本班學生自主學習、合作交流的現狀,對該班部分學生進行調查,把調查結果分成四類(:特別好,
:好,
:一般,
:較差).并將調查結果繪制成以下兩幅不完整的統計圖,請根據統計圖解答下列問題:
(1)本次調查中,陳老師一共調查了______名學生;
(2)將條形統計圖補充完整;扇形統計圖中類學生所對應的圓心角是_________度;
(3)為了共同進步,陳老師從被調查的類和
類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
【答案】(1)20;(2)見解析,36;(3)見解析,
【解析】
(1)由題意根據對應人數除以所占比值即可求出陳老師一共調查了多少名學生;
(2)根據題意補充條形統計圖并類學生所對應的整個數據的比例乘以360°即可求值;
(3)根據題意利用列表法或樹狀圖法求概率即可.
解:(1)由題意可得:(6+4)÷50%=20;
(2)C類學生人數:20×25%=5(名),
C類女生人數:5-2=3(名),
D類學生占的百分比:1-15%-50%-25%=10%,
D類學生人數:20×10%=2(名),
D類男生人數:2-1=1(名),
補充條形統計圖如圖
類學生所對應的圓心角:
×360°=36°;
(3)由題意畫樹形圖如下:
所有可能出現的結果共有6種,且每種結果出現的可能性相等,所選兩位同學恰好是一位男同學和一位女同學的結果共有3種.
所以P(所選兩位同學恰好是一位男同學和一位女同學)==
;
解法二:列表如下,A類學生中的兩名女生分別記為A1和A2,
女A1 | 女A2 | 男A | |
男D | (女A1,男D) | (女A2,男D) | (男A,男D) |
女D | (女A1,女D) | (女A2,女D) | (男A,女D) |
共有6種等可能的結果,其中,一男一女的有3種,
所以所選兩名學生中恰好是一名男生和一名女生的概率為=
.
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中,每個小正方形的邊長均為1,線段AB的端點均在小正方形的頂點上,請按要求畫出圖形并計算.
(1)以線段AB為一腰的等腰△ABC,點C在小正方形的頂點上,且S△ABC=6;
(2)以BC為對角線作平行四邊形BDCE,點D,E均在小正方形的頂點上,且∠ABD=45°;
(3)連接DE,請直接寫出線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月國際風箏節期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數關系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小左同學想利用影長測量學校旗桿的高度,如圖,她在某一時刻立一長度為1米的標桿,測得其影長為米,同時旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請幫小左同學算出學校旗桿的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組根據學習函數的經驗,對分段函數的圖象與性質進行了探究,請補充完整以下的探究過程.
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 1 | 0 | -3 | … |
(1)填空:a= .b= .
(2)①根據上述表格數據補全函數圖象;
②該函數圖象是軸對稱圖形還是中心對稱圖形?
(3)若直線與該函數圖象有三個交點,求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)【問題發現】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數量關系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數量關系有無變化?請僅就圖2的情形給出證明;
(3)【問題發現】
當正方形CDEF旋轉到B,E,F三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線與
軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線
,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知平面直角坐標系xOy(如圖1),一次函數的圖像與y軸交于點A,點M在正比例函數
的圖像上,且MO=MA.二次函數y=x2+bx+c的圖像經過點A、M.
(1)求線段AM的長;
(2)求這個二次函數的解析式;
(3)如果點B在y軸上,且位于點A下方,點C在上述二次函數的圖像上,點D在一次函數的圖像上,且四邊形ABCD是菱形,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D為邊AB上一點,E是CD的中點,且∠ACD=∠ABE.已知AC=2,設AB=x,AD=y,則y與x滿足的關系式為( 。
A.xy=4B.2xy﹣y2=4C.xy﹣y2=4D.x2+xy﹣2y2=4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com