【題目】如圖,在正方形ABCD中,AB=a,P為邊BC上一動點(不與B、C重合),E是邊BC延長線上一點,連結AP,過點P作PF⊥AP交∠DCE的平分線于點F,連結AF與邊CD交于點G,連結PG.
猜想:線段PA與PF的數量關系為 .
探究:△CPG的周長在點P的運動中是否改變?若不改變求其值.
應用:若PG∥CF,當a=時,則PB= .
【答案】答案見解析.
【解析】試題分析:
(1)猜想:PA=PF,在在BA邊上截取BQ=BP,連接PQ,如圖1:
通過證:∠BAP=∠CPF,∠AQB=∠PCF,AQ=CP證得△AQP≌△PCF,即可得到PA=PF;
(2)△CPG的周長在點P的運動中不改變,是一個定值;理由如下:
如圖2,延長CB至M,使BM=DG,連接AM,先證△ABM≌△ADG,再證△PAM≌△PAG,從而可得:△CPG的周長= PG+PC+CG=PM+PC+CG=PB+BM+PC+CG
=PB+DG+PC+CG=BC+DC=2AB=2a;
(3)由PG∥CF可證得△PCG是等腰直角三角形,從而可得PC=GC,PG=PC,設PB=
,則PC=GC=
,PG=
;結合(2)中結論可得:
,結合
解此的方程,即可得到PB的值.
試題解析:
(1)猜想:PA=PF,理由是:
在BA邊上截取BQ=BP,連接PQ,如圖1:
可得△BPQ為等腰直角三角形,即∠BQP=45°,
∴∠AQP=135°,
又∵CF為直角∠DCE的平分線,
∴∠FCE=45°,
∴∠PCF=∠AQP=135°,
∵四邊形ABCD為正方形,
∴∠B=∠BCD=∠D=90°,AB=BC=CD,
∴AB﹣BQ=BC﹣BP,即AQ=PC,
∵PF⊥AP,
∴∠APF=90°,
∴∠APB+∠CPF=90°,
又∵∠APB+∠QAP=90°,
∴∠QAP=∠CPF,
在△AQP和△PCF中, ,
∴△AQP≌△PCF(ASA),
∴PA=FP;
故答案為:PA=PF;
探究:△CPG的周長在點P的運動中不改變,是一個定值;
如圖2,延長CB至M,使BM=DG,連接AM,
∵AD=AB,∠ABM=∠ADG=90°,
∴△ABM≌△ADG,
∴∠GAD=∠BAM,AG=AM,
由(1)可得得:AP=PF,又∵AP⊥PF,
∴△APF是等腰直角三角形,
∴∠PAG=45°,
∵∠BAD=90°,
∴∠GAD+∠BAP=45°,
∴∠BAM+∠BAP=45°,
∴∠MAP=∠PAG=45°,
又∵AP=AP,
∴△PAM≌△PAG,
∴PM=PG,
∴△PCG的周長=PG+PC+CG,
=PM+PC+CG,
=PB+BM+PC+CG,
=PB+DG+PC+CG,
=BC+DC,
=2a;
應用:如圖3,∵PG∥CF,
∴∠PGC=∠GCF=45°,
∴△PCG是等腰直角三角形,
∴PC=CG,
設PB=x,則PC=CG=a﹣x,
由探究得:△PCG的周長=2a,
則PG+PC+CG=2a,
PC+2PC=2a,
(a﹣x)=2a,
把代入得:
解得: ,即PB=
.
科目:初中數學 來源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結果精確到0.1米).參考數據:≈1.73,
≈1.41.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課前預習是學習的重要環節,為了了解所教班級學生完成課前預習的具體情況,某班主任對本班部分學生進行了為期半個月的跟蹤調查,他將調查結果分為四類:A.優秀,B.良好,C.一般,D.較差,并將調查結果繪制成以下兩幅不完整的統計圖.
(1)本次調查的樣本容量是 ;其中A類女生有 名,D類學生有 名;
(2)將條形統計圖和扇形統計圖補充完整;
(3)若從被調查的A類和D類學生中各隨機選取一位學生進行“一幫一”輔導學習,即A類學生輔導D類學生,請用列表法或畫樹狀圖的方法求出所選兩位同學中恰好是一位女同學輔導一位男同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等邊△ABC在數軸上的位置如圖所示,點A、C對應的數分別為0和-1,若△ABC繞著頂點順時針方向在數軸上連續翻轉,翻轉1次后,點B所對應的數為1;則翻轉2006次后,點B所對應的數是( )
A、2005 B、2006 C、2007 D、2008
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
我們定義:若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結合閱讀材料,完成下列問題:
(1)下列哪個四邊形一定是和諧四邊形 .
A.平行四邊形 B.矩形 C.菱形 D.等腰梯形
(2)命題:“和諧四邊形一定是軸對稱圖形”是 命題(填“真”或“假”).
(3)如圖,等腰Rt△ABD中,∠BAD=90°.若點C為平面上一點,AC為凸四邊形ABCD的和諧線,且AB=BC,請求出∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.
(1)求∠2、∠3的度數;
(2)說明OF平分∠AOD的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明的家在某公寓樓AD內,他家的前面新建了一座大廈BC,小明想知道大廈的高度,但由于施工原因,無法測出公寓底部A與大廈底部C的直線距離,于是小明在他家的樓底A處測得大廈頂部B的仰角為60°,爬上樓頂D處測得大廈的頂部B的仰角為30°,已知公寓樓AD的高為60米,請你幫助小明計算出大廈的高度BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校科技小組進行野外考察,途中遇到一片的爛泥濕地,為了人員和設備安全迅速地通過這片濕地,他們沿著前進路線鋪了若干塊大小不同的木板,構筑成一條臨時通道,已知當壓力不變時,木板對地面的壓強p(Pa)是木板面積S(m2)的反比例函數,其圖象如圖所示.
(1)請直接寫出p與S 之間的關系式和自變量S 的取值范圍;
(2)當木板面積為0.2 m2時,壓強是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com