【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數比例見扇形統計圖.
(1)參加這次夏令營活動的初中生共有多少人?
(2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款.結果小學生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學生每人捐款 20 元.問平均 每人捐款是多少元?
(3)在(2)的條件下,把每個學生的捐款數額(以元為單位)——記錄下來,則在這組數據中,眾數是多少?
【答案】(1)80 人;(2)11.5 元; (3)10 元.
【解析】試題分析:(1)參加這次夏令營活動的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人數.
(2)小學生、高中生和大學生的人數為200×20%=40,200×30%=60,200×10%=20,根據平均數公式就可以求出平均數.
(3)因為初中生最多,所以眾數為初中生捐款數.
試題解析:解:(1)參加這次夏令營活動的初中生共有200×(1-10%-20%-30%)=80人;
(2)小學生、高中生和大學生的人數為200×20%=40,200×30%=60,200×10%=20,
所以平均每人捐款==11.5(元);
(3)因為初中生最多,所以眾數為10(元).
科目:初中數學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌
粽子,每盒進價是40元,超市規定每盒售價不得少于45元.根據以往銷售經驗發現:當售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數關系式;(4分)
(2)當每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某科技開發公司研制出一種新型產品,每件產品的成本為2400元,銷售單價定為3000元.在該產品的試銷期間,為了促銷,鼓勵商家購買該新型產品,公司決定商家一次購買這種新型產品不超過10件時,每件按3000元銷售;若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產品多少件時,銷售單價恰好為2600元?
(2)設商家一次購買這種產品x件,開發公司所獲的利潤為y元,求y(元)與x(件)之間的函數關系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發現:當商家一次購買產品的件數超過某一數量時,會出現隨著一次購買的數量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數量越多,公司所獲的利潤最大,公司應將最低銷售單價調整為多少元(其它銷售條件不變)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是( )
A. 9 B. 10 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D,下列四個結論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點O到△ABC各邊的距離相等;
④設OD=m,AE+AF=n,則S△AEF=mn.
其中正確的結論是( 。
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示的圖形,像我們常見的符號——箭號.我們不妨把這樣圖形叫做“箭頭四角形”.
探究:
(1)觀察“箭頭四角形”,試探究與
、
、
之間的關系,并說明理由;
應用:
(2)請你直接利用以上結論,解決以下兩個問題:
①如圖2,把一塊三角尺放置在
上,使三角尺的兩條直角邊
、
恰好經過點
、
,若
,則
;
②如圖3,、
的2等分線(即角平分線)
、
相交于點
,若
,
,求
的度數;
拓展:
(3)如圖4,,
分別是
、
的2020等分線(
),它們的交點從上到下依次為
、
、
、…、
.已知
,
,則
度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com