【題目】解方程:
(1)
(2)
(3)
【答案】(1)x=2;(2)x=12;(3)x=-17.
【解析】
(1)根據解一元一次方程的步驟求解即可;
(2)先去括號、再移項、合并同類項,系數化為1即可;
(3)先去分母,去括號、再移項、合并同類項,系數化為1即可.
(1)移項得,2x+x=1+5,
合并同類項,得3x=6,
系數化為1,得x=2;
(2)去括號得,6x+15=8x-6-3,
移項得,6x-8x=-6-3-15,
合并同類項,得-2x=-24,
系數化為1得,x=12;
(3)去分母,得3(x-1)-12=2(2x+1),
去括號得,3x-3-12=4x+2,
移項得,3x-4x=2+3+12,
合并同類項,-x=17,
系數化為1,x=-17.
科目:初中數學 來源: 題型:
【題目】如圖,將一張直角三角形紙片沿斜邊
上的中線
剪開,得到
,再將
沿
方向平移到
的位置,若從平移開始到點
未到達點
時,
交
于點
,
交
于點
,連結
.
(1)試探究的形狀,請說明理由;
(2)當四邊形為菱形時,判斷
與
是否全等,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步推廣“陽光體育”大課間活動,某中學對已開設的A實心球,B立定跳遠,C跑步,D跳繩四種活動項目的學生喜歡情況進行調查,隨機抽取了部分學生,并將調查結果繪制成圖1,圖2的統計圖,請結合圖中的信息解答下列問題:
(1)請計算本次調查中喜歡“跑步”的學生人數和所占百分比,并將兩個統計圖補充完整;
(2)隨機抽取了5名喜歡“跑步”的學生,其中有3名女生,2名男生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=kx+b交x軸于點A(1,0),與雙曲線y=-(x<0)交于點B(-1,a).
(1)求直線AB的解析式;
(2)若點B左側一直線x=m與直線AB交于點C,與雙曲線交于點D(C、D兩點不重合),當BC=BD時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學問題:用邊長相等的正三角形、正方形和正六邊形能否進行平面圖形的鑲嵌?
問題探究:為了解決上述數學問題,我們采用分類討論的思想方法去進行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進行平面圖形的鑲嵌?
第一類:選正三角形.因為正三角形的每一個內角是60°,所以在鑲嵌平面時,圍繞某一點有6個正三角形的內角可以拼成一個周角,所以用正三角形可以進行平面圖形的鑲嵌.
第二類:選正方形.因為正方形的每一個內角是90°,所以在鑲嵌平面時,圍繞某一點有4個正方形的內角可以拼成一個周角,所以用正方形也可以進行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時,設圍繞某一點有x個正三角形和y個正方形的內角可以拼成個周角.根據題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數解為.
鑲嵌平面時,在一個頂點周圍圍繞著3個正三角形和2個正方形的內角可以拼成一個周角,所以用正三角形和正方形可以進行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結論),
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,分別是兩棵樹及其影子的情形
(1)哪個圖反映了陽光下的情形?哪個圖反映了路燈下的情形.
(2)請畫出圖中表示小麗影長的線段.
(3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(定義新知)在數軸上,點M和點N分別表示數x1和x2 ,可以用絕對值表示點M、N兩點間的距離d (M,N),即d (M,N)=|x1-x2|.
(初步應用)
(1)在數軸上,點A、B、C分別表示數-1、2、x, 解答下列問題:
①d (A,B)= ;
②若d(A,C)=2,則x的值為 ;
③若d(A,C)+d(B,C)=d(A,B),且x為整數,則x的取值有 個.
(綜合應用)
(2)在數軸上,點D、E、F分別表示數-2、4、6.動點P沿數軸從點D開始運動,到達F點后立刻返回,再回到D點時停止運動.在此過程中,點P的運動速度始終保持每秒2個單位長度.設點P的運動時間為t秒.
①當t= 時,d(D,P)=3;
②在整個運動過程中,請用含t的代數式表示d(E,P).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com