【題目】寧安市與哈爾濱市兩地相距360千米.甲車在寧安市,乙車在哈爾濱市,兩車同時出發,相向而行,在A地相遇.為節約費用(兩車相遇并換貨后,均需按原路返回出發地),兩車換貨后,甲車立即按原路返回寧安市.設每車在行駛過程中速度保持不變,兩車間距離y(千米)與時間x(小時)的函數關系如圖所示.根據所提供的信息,回答下列問題:
(1)求甲、乙兩車的速度;(2)說明從兩車開始出發到5小時這段時間乙車的運動狀態.
【答案】(1)甲、乙兩車的速度分別為70km/h、80km/h(2)見解析
【解析】
(1)根據兩車換貨后,甲車立即按原路返回北京市,而乙車又停留1小時后按原路返回石家莊市,又圖象可得出甲車的速度為70km/h,又根據兩車從出發開始到A地相遇用時2小時,可計算出乙車的速度;
(2)根據函數圖像與題意即可求解.
(1)由圖象得,3時至4時,是甲車先行駛1小時走的路程,
則甲車的速度為:70÷1=70km/h;
∵兩車從出發開始到A地相遇用時2小時,
則乙車的速度為:(30070×2)÷2=80km/h;
答:甲、乙兩車的速度分別為70km/h、80km/h;
(2)根據函數圖像與題意可得出發到5小時這段時間乙車的運動狀態為:
乙車以80km/h的速度從哈爾濱市出發2小時到達A地,停留1小時后,再以原速返回哈爾濱市,4-5小時時還在返回的途中.
科目:初中數學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2-2ax+a+4(a<0)經過點B.
(1)求該拋物線的函數表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內,連接AM、BM,設點M的橫坐標為m,△ABM的面積為S,求S與m的函數表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉得到直線l′,當直線l′與直線AM′重合時停止旋轉,在旋轉過程中,直線l′與線段BM′交于點C,設⊙B, ⊙M′都與直線l′相切,半徑分別為R1、R2 , 當R1+R2最大時,求直線l′旋轉的角度(即∠BAC的度數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數y=ax2+bx+c(a<0)的圖象如圖所示,且關于x的方程ax2+bx+c=k有兩個不相等的實根,則常數k的取值范圍是( )
A.0<k<4
B.﹣3<k<1
C.k<﹣3或k>1
D.k<4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了豐富學生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數與900元購進的足球個數相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點D為BC的中點.
(1)如圖①,若點E、F分別為AB、AC上的點,且DE⊥DF,求證:BE=AF;
(2)若點E、F分別為AB、CA延長線上的點,且DE⊥DF,那么BE=AF嗎?請利用圖②說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合題,如圖,正方形ABCD。
(1)請在圖①中作兩條直線,使它們將正方形ABCD的面積三等分;
(2)如圖②,在矩形ABCD中,AB=6,BC=9,在圖②中過頂點A作兩條直線,使它們將矩形ABCD的面積三等分,井說明理由;
(3)如圖③,農博園有一塊不規則的五邊形ABCDE空地,其中AB∥CD、AE∥BC,AB=AC=100米,AE=160米,BC=120米,CD=62.5米,根據視覺效果和花期特點,農博園設計部門想在這片空地種上等面積的三種不同的花,要求從入口A點處修兩條筆直的小路(小路的面積忽略不計)方便游客賞花,兩條小路將這塊地面積三等分.請通過計算畫圖說明其設計部們能否實現,若能實現請確定小路盡頭的位置.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經過的路程相等,設BD為xm.
(1)請用含有x的整式表示線段AD的長為______m;
(2)求這棵樹高有多少米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com