【題目】如圖,在數學活動課中,小敏為了測量校園內旗桿AB的高度,站在教學樓上的C處測得旗桿低端B的俯角為45°,測得旗桿頂端A的仰角為30°,如旗桿與教學樓的水平距離CD為9m,則旗桿的高度是多少?(結果保留根號)
科目:初中數學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發,當其中一點到達端點時,另一點隨之停止運動.
(1)經過多長時間,四邊形PQCD是平行四邊形?
(2)經過多長時間,四邊形PQBA是矩形?
(3)經過多長時間,當PQ不平行于CD時,有PQ=CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算下列各式
(1)﹣(﹣5)﹣(+7)
(2)|﹣5﹣8|+24÷(﹣3)
(3)﹣0.25÷(﹣)×(1﹣
)
(4)36×()
(5)1÷[﹣(﹣1+1
)]×4
(6)23﹣(1﹣0.5)××[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(k<0)的圖象與矩形ABCD的邊相交于E、F兩點,且BE=2AE,E(﹣1,2).
(1)求反比例函數的解析式;
(2)連接EF,求△BEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個能被13整除的自然數我們稱為“十三數”,“十三數”的特征是:若把這個自然數的末三位與末三位以前的數字組成的數之差,如果能被13整除,那么這個自然數就一定能被13整除.例如:判斷383357能不能被13整除,這個數的末三位數字是357,末三位以前的數字組成的數是383,這兩個數的差是383﹣357=26,26能被13整除,因此383357是“十三數”.
(1)判斷3253和254514是否為“十三數”,請說明理由.
(2)若一個四位自然數,千位數字和十位數字相同,百位數字與個位數字相同,則稱這個四位數為“間同數”.
①求證:任意一個四位“間同數”能被101整除.
②若一個四位自然數既是“十三數”,又是“間同數”,求滿足條件的所有四位數的最大值與最小值之差.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解我縣1800名初中畢業生參加云南省數學學業水平考試的成績情況(得分取整數),我們隨機抽取了部分學生的數學成績,將其等級情況制成不完整的統計表如下:
等級 | A級(優秀) | B級(良好) | C級(及格) | D級(不及格) |
人數 | 22 | 28 | 18 |
根據以上提供的信息解答下列問題:
(1)若抽取的學生的數學成績的及格率(C級及其以上為及格)為77.5%,則抽取的學生數是多少人?其中成績為C級的學生有多少人?
(2)求出D級學生的人數在扇形統計圖中的圓心角.
(3)請你估計全縣數學成績為A級的學生總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與y軸相交于點A0,過點A0作軸的平行線交直線y=0.5x+1于點B1,過點 B1作
軸的平行線交直線y=x+2于點A1,再過點
作
軸的平行線交直線y=0.5x+1于點B2,過點 B2作
軸的平行線交直線y=x+2于點A2,…,依此類推,得到直線y=x+2上的點A1 ,A2 ,A3 ,…,與直線y=0.5x+1上的點B1,B2,B3,…,則A7B8的長為( )
A.64 B.128 C.256 D.512
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售A型和B型兩種型號的電腦,銷售一臺A型電腦可獲利120元,銷售一臺B型電腦可獲利140元.該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的3倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y與x的關系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售利潤最大?
(3)若限定商店最多購進A型電腦60臺,則這100臺電腦的銷售總利潤能否為13600元?若能,請求出此時該商店購進A型電腦的臺數;若不能,請求出這100臺電腦銷售總利潤的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形OABC在平面直角坐標系中的位置如圖所示頂點A(5,0),OB=,P是對角線OB上的一個動點,D(0,1),當CP+DP的值最小時,點P的坐標為( 。
A. (,3
) B. (
,
) C. (1,
) D. (
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com