【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積.
【答案】
(1)解:根據題意設拋物線解析式為y=a(x+4)(x﹣2),
把C(0,2)代入得:﹣8a=2,即a=﹣ ,
則拋物線解析式為y=﹣ (x+4)(x﹣2)=﹣
x2﹣
x+2
(2)解:過點D作DH⊥AB于點H,交直線AC于點G,連接DC,AD,如圖所示,
設直線AC解析式為y=kx+t,則有 ,
解得: ,
∴直線AC解析式為y= x+2,
設點D的橫坐標為m,則G橫坐標也為m,
∴DH=﹣ m2﹣
m+2,GH=
m+2,
∴DG=﹣ m2﹣
m+2﹣
m﹣2=﹣
m2﹣m,
∴S△ADC=S△ADG+S△CDG= DGAH+
DGOH=
DGAO=2DG=﹣
m2﹣2m=﹣
(m2+4m)=﹣
[(m+2)2﹣4]=﹣
(m+2)2+2,
當m=﹣2時,S△ADC取得最大值2,此時yD=﹣ ×(﹣2)2﹣
×(﹣2)+2=2,即D(﹣2,2).
【解析】(1)根據A與B坐標設出拋物線解析式,將C坐標代入即可求出;(2)過點D作DH⊥AB于點H,交直線AC于點G,連接DC,AD,如圖所示,利用待定系數法求出直線AC解析式,設D橫坐標為m,則有G橫坐標也為m,表示出DH與GH,由DH﹣GH表示出DG,三角形ADC面積=三角形ADG面積+三角形DGC面積,表示出面積與m的關系式,利用二次函數性質確定出面積的最大值,以及此時m的值,即此時D的坐標即可.
【考點精析】解答此題的關鍵在于理解二次函數的最值的相關知識,掌握如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a,以及對拋物線與坐標軸的交點的理解,了解一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數學 來源: 題型:
【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數,單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據統計數據繪制了如下兩幅尚不完整的統計圖.
解答下列問題:
(1)這次抽樣調查的樣本容量是 ,并補全頻數分布直方圖;
(2)C組學生的頻率為 ,在扇形統計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數是;
(2)連結AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0( )
A.沒有實根
B.只有一個實根
C.有兩個實根,且一根為正,一根為負
D.有兩個實根,且一根小于1,一根大于2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A,B兩點在數軸上,點A表示的數為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發)
(1)數軸上點B對應的數是______.
(2)經過幾秒,點M、點N分別到原點O的距離相等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列等式:
3﹣=3×
;
(﹣)﹣6=(﹣
)×6;
(﹣0.5)﹣(﹣1)=(﹣0.5)×(﹣1)
根據上面這些等式反映的規律,解答下列問題:
(1)上面等式反映的規律用文字語言可以描述如下:存在兩個有理數,使得這兩個有理數的差等于
.
(2)若滿足上述規律的兩個有理數中有一個數是,求另一個有理數;
(3)若這兩個有理數用字母a、b表示,則上面等式反映的規律用字母表示為 ;
(4)在(3)中的關系式中,字母a、b是否需要滿足一定的條件?若需要,直接寫出字母a、b應滿足的條件;若不需要,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,每小正方形的邊長為個單位,每個小方格的頂點叫格點.
(1)畫出的
邊上的中線
;
(2)畫出向右平移
個單位后得到的
;
(3)圖中與
的關系是 ;
(4)能使的格點
(不同于點
),共有 個,在圖中分別用
、
、
表示出來.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com