如圖,E是長方形ABCD的邊AB上的點,EF⊥DE交BC于點F
(1)求證:△ADE∽△BEF;
(2)設H是ED上一點,以EH為直徑作⊙O,DF與⊙O相切于點G,若DH=OH=3,求圖中陰影部分的面積(結果保留到小數點后面第一位,≈1.73,π≈3.14).
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠B=90°.
∵EF⊥DE,
∴∠DEF=90°.
∴∠AED=90°﹣∠BEF=∠EFB.
∵∠A=∠B,∠AED=∠EFB,
∴△ADE∽△BEF.
(2)解:∵DF與⊙O相切于點G,
∴OG⊥DG.
∴∠DGO=90°.
∵DH=OH=OG,
∴sin∠ODG==
.
∴∠ODG=30°.
∴∠GOE=120°.
∴S扇形OEG==3π.
在Rt△DGO中,
cos∠ODG==
=
.
∴DG=3.
在Rt△DEF中,
tan∠EDF==
=
.
∴EF=3.
∴S△DEF=DE•EF=
×9×3
=
,
S△DGO=DG•GO=
×3
×3=
.
∴S陰影=S△DEF﹣S△DGO﹣S扇形OEG
=﹣
﹣3π
=.9﹣3π
≈9×1.73﹣3×3.14
=6.15
≈6.2
∴圖中陰影部分的面積約為6.2.
科目:初中數學 來源: 題型:
南寧東高鐵火車站位于南寧市青秀區鳳嶺北路,火車站總建筑面積約為267000平方米,其中數據267000用科學記數法表示為 ( )
(A)26.7×10 (B)2.67×10
(C)2.67×10
(D)0.267×10
查看答案和解析>>
科目:初中數學 來源: 題型:
張老師給愛好學習的小軍和小俊提出這樣一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
【變式探究】如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;
請運用上述解答中所積累的經驗和方法完成下列兩題:
【結論運用】如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=
dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,M,N兩點在數軸上表示的數分別是m,n,則下列式子中成立的是( )
| A. | m+n<0 | B. | ﹣m<﹣n | C. | |m|﹣|n|>0 | D. | 2+m<2+n |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com