分析 根據長方形的性質可得AD=BC,根據翻轉變換的性質可得AF=AD,EF=DE,利用勾股定理列式求出BF,再求出FC,然后設DE=x,表示出EC,在Rt△CEF中,利用勾股定理列方程求出x的值,即可解決問題.
解答 解:∵四邊形ABCD是長方形,
∴AD=BC=10cm,CD=AB=6cm,
∵長方形紙片沿AE折疊,點D落在BC邊的點F處,
∴AF=AD=10cm,EF=DE,
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8cm,
∴FC=BC-BF=10-8=2cm,
設DE=x,則EC=CD-DE=6-x,
在Rt△CEF中,EC2+FC2=EF2,
即(6-x)2+22=x2,
解得x=$\frac{10}{3}$,
∴EC=CD-DE=6-$\frac{10}{3}$=$\frac{8}{3}$,
故答案為$\frac{8}{3}$.
點評 本題考查了翻轉變換的性質,矩形的性質,勾股定理,翻折前后對應線段相等,對應角相等,此類題目,關鍵在于利用勾股定理列出方程.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com