【題目】某化妝品銷售公司每月收益y萬元與銷售量x萬件的函數關系如圖所示.(收益=銷售利潤﹣固定開支)
(1)寫出圖中點A與點B的實際意義;
(2)求y與x的函數表達式;
(3)已知目前公司每月略有虧損,為了讓公司扭虧為盈,經理決定將每件產品的銷售單價提高2元,請在圖中畫出提價后y與x函數關系的圖象,并直接寫出該函數的表達式.(要標出確定函數圖象時所描的點的坐標)
科目:初中數學 來源: 題型:
【題目】為提高飲水質量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進價是150元/臺,B型號家用凈水器進價是350元/臺,購進兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,DC=14,把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖乙),此時AB與 CD1交于點O,則線段AD1的長為( )
A.6
B.10
C.8
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合題
(1)已知二次函數y=ax2+bx+1的圖象經過點(1,3)和(3,﹣5),求a、b的值;
(2)已知二次函數y=﹣x2+bx+c的圖象與x軸的兩個交點的橫坐標分別為1和2.求這個二次函數的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l1∥l2,A,B分別是l1,l2上的點,l3和l1,l2分別交于點C,D,P是線段CD上的動點(點P不與C,D重合).
(1)若∠1=150°,∠2=45°,求∠3的度數;
(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①已知正方形ABCD的邊BC、CD上分別有E、F兩點,且∠EAF=45°,現將△ADF繞點A順時針旋轉90°至△ABH處.
(1)線段EF、BE、DF有何數量關系?并說明理由;
模仿(1)中的方法解決(2)、(3)兩個問題:
(2)如圖②,若將E、F移至BD上,其余條件不變,且BE=,DF=3,求EF的長;
(3)如圖③,圖形變成矩形ABCD,∠EAF=45°,BE=3,AB=6,AD=10,求DF和EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數的圖象于點B,AB=
.
(1)求反比例函數的解析式;
(2)若P(,
)、Q(
,
)是該反比例函數圖象上的兩點,且
時,
,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com