【題目】在平面直角坐標系中,正方形ABCD的頂點分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對于圖形M,給出如下定義:P為圖形M上任意一點,Q為正方形ABCD邊上任意一點,如果P,Q兩點間的距離有最大值,那么稱這個最大值為圖形M的“正方距”,記作
.
(1)已知點,
①直接寫出的值;
②直線與x軸交于點F,當
取最小值時,求k的取值范圍;
(2)的圓心為
,半徑為1.若
,直接寫出t的取值范圍.
【答案】(1)①5.②見解析;(2).
【解析】
(1) ①根據題意 是指點
到正方形
上動點
的最大距離,所以當點
與點
重合時,此時
最大為
;
②根據的最小值是,可知
,所以當直線
經過
和
,即可求出
的值;
(2)根據圓心 ,半徑為
,可知圓
在直線
的直線上動,因為
圓上動點
到正方形邊上動點
的最大值,所以可以轉化成
圓的半徑
圓心
到正方形邊上動點
,因為
,可以算出
的分界點,由于圓心
到點Q的最大值存在一種情況
時,可以計算出
,剛好
,即可求出符合題意
的取值范圍.
解:1.①由根據題意 是指點
到正方形
上動點
的最大距離,所以當點
與點
重合時,此時
最大,即
②如圖所示:
∵ .
當點的橫坐標在
時,
,
當點的橫坐標在
時,
,
∵要取最小值,
∴
∴符合題意的點F滿足
∴當直線經過點
的坐標為
和點
的坐標為
是分別求得
.
∴ 或
.
結合函數圖象可得或
.
(2)由題意可知:
時
可計算當
時,
當圓心在
軸左側時
可以考慮到當
時,
利用兩點之間的距離公式:
即
求得:,
當
時,
,即
當圓心在
軸右側時
可以考慮到當
時,
利用兩點之間的距離公式:
即
求得:,
當
時,
,即
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的對稱軸為
,與
軸的一個交點在
和
之間,其部分圖象如圖所示,則下列結論:
;
;
點
、
、
是該拋物線上的點,則
;
;
(
為任意實數).
其中正確結論的個數是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線過點
和點
,連結AB交y軸于點C.
(1)求拋物線的函數解析式;
(2)點P在線段AB下方的拋物線上運動,連結AP,BP. 設點P的橫坐標為m,△ABP的面積為s.
①求s與m的函數關系式;
②當s取最大值時,拋物線上是否存在點Q,使得S△ACQ=s. 若存在,求點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC和點P,設點P到△ABC三邊AB、AC、BC的距離分別為h1,h2,h3,△ABC的高為h.
(1)若點P在一邊BC上,如圖①,此時h3=0,求證:h1+h2+h3=h;
(2)當點P在△ABC內,如圖②,以及點P在△ABC外,如圖③,這兩種情況時,上述結論是否成立?若成立,請予以證明;若不成立,h1,h2,h3與h之間又有怎樣的關系,請說出你的猜想,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,經過原點且與兩坐標軸分別交于點
和點
,點
的坐標為
,點
的坐標為
,解答下列各題:
(1)求圓心的坐標;
(2)在上是否存在一點
,使得
是等腰三角形?若存在,請求出
的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了鼓勵節能降耗,某市規定如下用電收費標準:每戶每月的用電量不超過120度時,電價為a元/度;超過120度時,不超過部分仍為a元/度,超過部分為b元/度.已知某用戶五月份用電115度,交電費69元,六月份用電140度,交電費94元.
(1)求a,b的值;
(2)設該用戶每月用電量為x(度),應付電費為y(元);
①分別求出0≤x≤120和x>120時,y與x之間的函數關系式;
②若該用戶計劃七月份所付電費不超過83元,問該用戶七月份最多可用電多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點A,將點A向右平移2個單位長度,得到點B.直線與x軸,y軸分別交于點C,D.
(1)求拋物線的對稱軸.
(2)若點A與點D關于x軸對稱.
①求點B的坐標.
②若拋物線與線段BC恰有一個公共點,結合函數圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里面有13個完全相同的小球,在每一個小球上書寫一個漢字,這些漢字組成一句話:“知之為知之,不知為不知,是知也”.隨機摸出一個小球然后放回,再隨機摸取一個小球,兩次取出的小球都是“知”的概率是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com