【題目】已知直線或
與反比例函數
的圖象交于
、
兩點,
,則
的值為__________.
【答案】0或4或-4
【解析】
首先對一次函數進行分類討論,由于反比例函數的圖象在第一、三象限,所以①
與反比例函數
交于
,
兩點,此時根據
,以及直線
與坐標軸的夾角為
,可以求出
兩點的坐標為
,
,代入直線
即可解出
;②
與反比例函數
交于
,
兩點,此時還應再分兩種情況,i:
,設出
的橫坐標為
,則縱坐標為
,利用反比例函數的性質列出方程
,解出
即可求出
的值;ii:
,和上面同樣的方法即可求解;
因為直線或
與反比例函數
的圖象交于
,
兩點,①由于反比例函數
的圖象在第一、三象限,當
與反比例函數
的圖象交于
,
兩點,且
時(如圖1),因為反比例函數
的圖象的兩支最接近的兩點
與
之間的距離為4,此時
;②當直線
與反比例函數
的圖象交于
,
兩點時,應分兩種情況:一是在圖2中,
,設點
的橫坐標為
,則縱坐標為
,則有
,解得
,則有
過點
,代入解析式中可得
;同理,在圖3中,可求得
.
故答案是:0或4或-4
科目:初中數學 來源: 題型:
【題目】如圖 ,已知△ABC 中,∠C=90°,AC=BC=,將△ABC 繞點 A 順時針方向旋轉 60°得到△A′B′C′的位置,連接 C′B,則 C′B 的長為 ( )
A.2-B.
C.
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-
,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個小組同時從甲地出發,勻速步行到乙地,甲乙兩地相距7500米.第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達乙地.設第二組的步行速度為千米/小時,根據題意可列方程________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,
是
延長線上的定點,
為
邊上的一個動點,連接
,將射線
繞點
順時針旋轉
,交射線
于點
,連接
.
小東根據學習函數的經驗,對線段的長度之間的關系進行了探究.
下面是小東探究的過程,請補充完整:
(1)對于點在
上的不同位置,畫圖、測量,得到了線段
的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
0.00 | 0.53 | 1.00 | 1.69 | 2.17 | 2.96 | 3.46 | 3.79 | 4.00 | |
0.00 | 1.00 | 1.74 | 2.49 | 2.69 | 2.21 | 1.14 | 0.00 | 1.00 | |
4.12 | 3.61 | 3.16 | 2.52 | 2.09 | 1.44 | 1.14 | 1.02 | 1.00 |
在的長度這三個量中,確定_____的長度是自變量,_____的長度和_____的長度都是這個自變量的函數;
(2)在同一平面直角坐標系中,畫出(1)中所確定的兩個函數的圖象;
(3)結合畫出的函數圖象,解決問題:當時,
的長度約為________
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點,
在反比例函數
的圖象上,
軸于點
,
軸于點
,
.
(1)求,
的值和反比例函數的解析式;
(2)連接,
是線段
上一點,過點
作
軸的垂線,交反比例函數圖象于點
,若
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與
軸交于
,
兩點(點
在點
的右側),與
軸交于點
,已知
,
兩點的坐標分別為
,
(1)求拋物線的表達式;
(2)一動點從點
出發,沿線段
以每秒1個單位長度的速度向點
運動,同時點
從點
出發,沿線段
以每秒1個單位長度的速度向點
運動,當點
運動到點
時,點
隨之停止運動.設運動時間為
秒,當
為何值時以
、
、
為頂點的三角形與
相似?
(3)若點是
軸上一動點,點
是拋物線上一動點,試判斷是否存在以點
,
,
,
為頂點的四邊形是平行四邊形.若存在,請直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖 1,在平行四邊形中,點
是對角線
的中點,過點
的直線分別交
于點
若平行四邊形
的面積是 8,則四邊形
的面積是___________ .
(2)如圖 2,在菱形中,對角線相交于點 O,過點 O 的直線分別交
于點
,若
,求四邊形
的面積.
(3)如圖 3,在中,
,延長
到點
,使
,連結
,若
,則
的面積是____________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用2500元購進A、B兩種新型節能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.
類型 價格 | A型 | B型 |
進價(元/盞) | 40 | 65 |
標價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com