A. | 2.2 | B. | 2.5 | C. | 2 | D. | 1.8 |
分析 連接BD、CD,由勾股定理先求出BD的長,再利用△ABD∽△BED,得出$\frac{DE}{DB}$=$\frac{DB}{AD}$,可解得DE的長.
解答 解:如圖1,連接BD、CD,,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{6}^{2}-{5}^{2}}$=$\sqrt{11}$,
∵弦AD平分∠BAC,
∴CD=BD=$\sqrt{11}$,
∴∠CBD=∠DAB,
在△ABD和△BED中,
$\left\{\begin{array}{l}{∠BAD=∠EBD}\\{∠ADB=∠BDE}\end{array}\right.$
∴△ABD∽△BED,
∴$\frac{DE}{DB}=\frac{DB}{AD}$,即$\frac{DE}{\sqrt{11}}=\frac{\sqrt{11}}{5}$,
解得DE=$\frac{11}{5}$.
故選A.
點評 此題主要考查了三角形相似的判定和性質及圓周角定理,解答此題的關鍵是得出△ABD∽△BED.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com