【題目】已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中, 每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.
【答案】(1)畫圖見解析,C1(2,-2);(2)畫圖見解析,C2(1,0) △A2BC2的面積等于10
【解析】分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、
、
的位置,然后順次連接即可,再根據平面直角坐標系寫出點
的坐標;(2)延長BA到
使A
=AB,延長BC到
,使C
=BC,然后連接A2C2即可,再根據平面直角坐標系寫出
點的坐標,利用△
B
所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)
(2)如圖,△B
為所求,
(1,0),
△B
的面積:
6×4×2×6
×2×4
×2×4=24644=2414=10,
科目:初中數學 來源: 題型:
【題目】廣州火車南站廣場計劃在廣場內種植A,B兩種花木共 6600棵,若A花木數量是B花木數量的2倍少600棵.
(1)A,B兩種花木的數量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 經過一點有且只有一條直線與已知直線平行
B. 直線外一點到這條直線的垂線段,叫做點到直線的距離
C. 同一平面內,不相交的兩條直線是平行線
D. “相等的角是對頂角”是真命題
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某海灘景區門票價格為80元/人,景區為吸引游客,對門票價格進行動態管理,非節假日打a折,節假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節假日門票費用y1(元)及節假日門票費用y2(元)與游客x(人)之間的函數關系如圖所示.
根據圖象,回答下列問題:
(1)a= ,b=__ __.
(2)直接寫出y1,y2與x之間的函數表達式.
(3)導游小王6月10日(非節假日)帶A旅游團,6月20日(端午節)帶B旅游團到該海灘景區旅游,兩團共計50人,兩次共付門票費用3040元,求A,B兩個旅游團各有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=900,AD是∠BAC的角分線.
(1)以AB上的一點O為圓心,AD為弦在圖中作出⊙O.(不寫作法,保留作圖痕跡);
(2)試判斷直線BC與⊙O的位置關系,并證明你的結論;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明新家裝修,在裝修客廳時,購進彩色地磚和單色地磚共100塊,共花費5600元.已知彩色地磚的單價是80元/塊,單色地磚的單價是40元/塊.
(1)兩種型號的地磚各采購了多少塊?
(2)如果廚房也要鋪設這兩種型號的地磚共60塊,且采購地磚的費用不超過3200元,那么彩色地磚最多能采購多少塊?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+x+c過點A(0,4)和C(8,0),P(t,0)是x軸正半軸上的一個動點,M是線段AP的中點,將線段MP繞點P順時針旋轉90°得線段PB.過點B作x軸的垂線、過點A作y軸的垂線,兩直線相交于點D.
(1)求此拋物線的對稱軸;
(2)當t為何值時,點D落在拋物線上?
(3)是否存在t,使得以A、B、D為頂點的三角形與△PEB相似?若存在,求此時t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com