【題目】為弘揚中華民族傳統文化,某校舉辦了“古詩文大賽”,并為獲獎同學購買簽字筆和筆記本作為獎品.1支簽字筆和2個筆記本共8.5元,2支簽字筆和3個筆記本共13.5元.
(1)求簽字筆和筆記本的單價分別是多少元?
(2)為了激發學生的學習熱情,學校決定給每名獲獎同學再購買一本文學類圖書,如果給每名獲獎同學都買一本圖書,需要花費720元;書店出臺如下促銷方案:購買圖書總數超過50本可以享受8折優惠.學校如果多買12本,則可以享受優惠且所花錢數與原來相同.問學校獲獎的同學有多少人?
科目:初中數學 來源: 題型:
【題目】已知直線l1:y1=2x+3與直線l2:y2=kx﹣1交于A點,A點橫坐標為﹣1,且直線l1與x軸交于B點,與y軸交于D點,直線l2與y軸交于C點.
(1)求出A、B、C、D點坐標;
(2)求出直線l2的解析式;
(3)連結BC,求出S△ABC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=kx+b與二次函數y2=ax2的圖象交于A、B兩點.
(1)利用圖中條件,求兩個函數的解析式;
(2)根據圖象寫出使y1>y2的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結論:①AE=CF;②△ EPF是等腰直角三角形; ③2S四邊形AEPF=S△ ABC; ④BE+CF=EF.當∠ EPF在△ ABC內繞頂點P旋轉時(點E與A、B重合).上述結論中始終正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心,經過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線經過點M(1,3)和N(3,5)
(1)試判斷該拋物線與x軸交點的情況;
(2)平移這條拋物線,使平移后的拋物線經過點A(﹣2,0),且與y軸交于點B,同時滿足以A、O、B為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數圖象,根據圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數關系式(不寫過程);
(2)①求出點M的坐標,并解釋該點坐標所表示的實際意義;
②根據圖象判斷,x取何值時,y乙>y甲.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將矩形紙片ABCD沿AC剪開,得到△ABC和△ACD.
(1)將圖1中的△ABC繞點A順時針旋轉∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過點C′作C′E∥AC,交DC的延長線于點E,試判斷四邊形ACEC′的形狀,并說明理由.
(2)若將圖1中的△ABC繞點A順時針旋轉,使B,A,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過點A作AF⊥CC′于點F,延長AF至點G,使FG=AF,連接CG,C′G,試判斷四邊形ACGC′的形狀,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com