【題目】如圖,直線(xiàn)∥
,⊙O與
和
分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是
和
上的動(dòng)點(diǎn),MN沿
和
平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯(cuò)誤的是( )
A. B. l1和l2的距離為2
C. 若∠MON=90°,則MN與⊙O相切 D. 若MN與⊙O相切,則
【答案】D
【解析】
首先過(guò)點(diǎn)N作NC⊥AM于點(diǎn)C,直線(xiàn)l1∥l2,⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B,⊙O的半徑為1,易求得MN= =
,l1和l2的距離為2;
若∠MON=90°,連接NO并延長(zhǎng)交MA于點(diǎn)C,易證得CO=NO,繼而可得即O到MN的距離等于半徑,可證得MN與⊙O相切;
由題意可求得若MN與⊙O相切,則AM=或
.
解:如圖1,過(guò)點(diǎn)N作NC⊥AM于點(diǎn)C,
∵直線(xiàn)l1∥l2,⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B,⊙O的半徑為1,
∴CN=AB=2,
∵∠1=60°,
∴MN= =
,
故A與B正確;
如圖3,
若∠MON=90°,連接NO并延長(zhǎng)交MA于點(diǎn)C,則△AOC≌△BON,
故CO=NO,△MON≌△MOM′,故MN上的高為1,即O到MN的距離等于半徑.
故C正確;
如圖2,∵MN是切線(xiàn),⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B,
∴∠AMO=∠1=30°,
∴AM=;
∵∠AM′O=60°,
∴AM′=,
∴若MN與⊙O相切,則AM=或
;
故D錯(cuò)誤.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy(如圖)中,拋物線(xiàn)y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(4,0)、B(2,2),與y軸的交點(diǎn)為C.
(1)試求這個(gè)拋物線(xiàn)的表達(dá)式;
(2)如果這個(gè)拋物線(xiàn)的頂點(diǎn)為M,求△AMC的面積;
(3)如果這個(gè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)D,點(diǎn)E在線(xiàn)段AB上,且∠DOE=45°,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一面12米長(zhǎng)的墻,某農(nóng)戶(hù)計(jì)劃用28米長(zhǎng)的籬笆靠墻圍成一個(gè)矩形養(yǎng)雞場(chǎng)ABCD(籬笆只圍AB、BC、CD三邊),其示意圖如圖所示.
(1)若矩形養(yǎng)雞場(chǎng)的面積為92平方米,求所用的墻長(zhǎng)AD.(結(jié)果精確到0.1米)(參考數(shù)據(jù):=1.41,
=1.73,
=2.24)
(2)求此矩形養(yǎng)雞場(chǎng)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)E為線(xiàn)段AB上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接CE,將∠ACE的兩邊CE,CA分別繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到射線(xiàn)CE,,CA,,過(guò)點(diǎn)A作AB的垂線(xiàn)AD,分別交射線(xiàn)CE,,CA,于點(diǎn)F,G.
(1)依題意補(bǔ)全圖形;
(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示);
(3)用等式表示線(xiàn)段AE,AF與BC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)二次函數(shù)的對(duì)稱(chēng)軸是x=1,圖象最低點(diǎn)P的縱坐標(biāo)是﹣8,圖象過(guò)(﹣2,10)且與x軸交于A,B與y軸交于C.求:
(1)這個(gè)二次函數(shù)的解析式;
(2)△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD各邊的延長(zhǎng)線(xiàn)和反向延長(zhǎng)線(xiàn)與⊙O的交點(diǎn)把⊙O分成8條相等的弧,則⊙O的半徑是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)交
軸的負(fù)半軸于點(diǎn)
.點(diǎn)
是
軸正半軸上一點(diǎn),點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱(chēng)點(diǎn)
恰好落在拋物線(xiàn)上.過(guò)點(diǎn)
作
軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)
.若點(diǎn)
的橫坐標(biāo)為1,則
的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組,利用樹(shù)影測(cè)量樹(shù)高,如圖(1),已測(cè)出樹(shù)AB的影長(zhǎng)AC為12米,并測(cè)出此時(shí)太陽(yáng)光線(xiàn)與地面成30°夾角.
(1)求出樹(shù)高AB;
(2)因水土流失,此時(shí)樹(shù)AB沿太陽(yáng)光線(xiàn)方向倒下,在傾倒過(guò)程中,樹(shù)影長(zhǎng)度發(fā)生了變化,假設(shè)太陽(yáng)光線(xiàn)與地面夾角保持不變.求樹(shù)的最大影長(zhǎng).(用圖(2)解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)
,與
軸交于點(diǎn)
,
、
分別為
軸、直線(xiàn)
上的動(dòng)點(diǎn),當(dāng)四邊形
的周長(zhǎng)最小時(shí),
所在直線(xiàn)對(duì)應(yīng)的函數(shù)表達(dá)式是( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com