【題目】如圖,將邊長為4的正方形ABCD沿著折痕EF折疊,使點B落在邊AD的中點G處.
(1)求線段BE的長;
(2)連接BF、GF,求證:BF=GF;
(3)求四邊形BCFE的面積.
【答案】(1);(2)證明見解析;(3)
.
【解析】
(1)由折疊的性質可得,
,設
,則
,在
中利用勾股定理求出
的值;
(2)根據折疊的性質即可求解;
(3)四邊形是梯形,要求其面積需要得出
的長,可通過求出
的長度,進行求解.
(1)由題意,點與點
,點
與點
分別關于直線
對稱,
,
,
設,則
,
四邊形
是正方形,
,
,
落在邊
的中點
處,
,
,
解得:,
.
(2)將邊長為
的正方形
沿著折痕
折疊,使點
落在邊
的中點
處,連接BF、GF,在△BFE和△GFE中,BE=GE,∠BEF=∠GEF,EF=EF,∴△BFE≌△GFE
;
(3)
四邊形
是正方形,
,
,
點
、
分別在
、
邊上,
四邊形
是直角梯形,
,
,
,
,
,
,
,
,
,
在中,
,
,
,
,
,
,
,
在中,
,
,
.
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.
(1)如圖2,在△ABC中,∠B>∠C,若經過兩次折疊,∠BAC是△ABC的好角,則∠B與∠C的等量關系是_______;
(2)如果一個三角形的最小角是20°,則此三角形的最大角為______時,該三角形的三個角均是此三角形的好角。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學為了了解孩子們對《中國詩詞大會》,《挑戰不可能》,《最強大腦》,《超級演說家》,《地理中國》五種電視節目的喜愛程度,隨機在七、八、九年級抽取了部分學生進行調查(每人只能選擇一種喜愛的電視節目),并將獲得的數據進行整理,繪制出以下兩幅不完整的統計圖,請根據兩幅統計圖中的信息回答下列問題:
(1)本次調查中共抽取了名學生.
(2)補全條形統計圖.
(3)在扇形統計圖中,喜愛《地理中國》節目的人數所在的扇形的圓心角是度.
(4)若該學校有2000人,請你估計該學校喜歡《最強大腦》節目的學生人數是多少人?.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,過點D作DE⊥BD交BA的延長線于點E.
(1)當ABCD是菱形時,證明:AE=AB;
(2)當ABCD是矩形時,設∠E=α,問:∠E與∠DOA滿足什么數量關系?寫出結論并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=
(1)求點B的坐標;
(2)求直線BN的解析式;
(3)將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關于運動的時間t(0<t≤13)的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= (m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數和一次函數的解析式;
(2)求點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
(1)如圖1,AC∥BD,點E為直線AC上方一點,連接CE、DE,猜想∠C、∠D、∠E的數量關系,并證明.小明發現,可以過點E作MN∥AC來解決問題,如圖2,請你完成解答:
(2)用學過的知識或參考小明的方法,解決下面的問題:
如圖3,AB∥CD,P是平面內一點,連接AP、CP,使AP∥BD,∠APC=100°,BM、CM分別平分∠ABD,∠DCP交于點M,求∠M的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉三角板得到的圖形中的3種情況,研究:
(1)三角板繞點P旋轉,觀察線段PD與PE之間有什么數量關系?并結合圖②說明理由.
(2)三角板繞點P旋轉,△PCE是否能成為等腰三角形?若能,指出所有情況(即寫出△PCE為等腰三角形時BE的長);若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com