【題目】如圖,已知為
的直徑,
為
的切線,連接
,過(guò)
作
交
于
,連接
交
于
,延長(zhǎng)
交于點(diǎn)
(1)求證:是
的切線;
(2)若
①求的長(zhǎng);
②連接交
于
,求
的值.
【答案】(1)見(jiàn)解析;(2)①12,②
【解析】
(1)連接OD,由切線的性質(zhì)和圓周角定理可得∠CAB=90°=∠ADB,由“SAS”判定△CDO≌△CAO,則∠CDO=∠CAO=90°,然后根據(jù)切線的判定定理可得到CD是⊙O的切線;
(2)①設(shè)⊙O半徑為r,則OD=OB=r,在Rt△ODE中利用勾股定理得到r2+42=(r+2)2,解得r=6,即OB=6,然后根據(jù)平行線分線段成比例定理,由DB∥OC得到DE:CD=BE:OB,于是可計(jì)算出CD=12;
②由△CDO≌△CAO得到AC=CD=6,在Rt△AOC中利用勾股定理計(jì)算出OC=,再證明Rt△OAG∽△OCA,利用相似比計(jì)算出OG=
,則CG=OC-OG=
,易得BD=2OG=
,然后利用CG∥BD得到
.
證明:如圖,連接
為
的切線,
為
的直徑
,
,
,
,
,且
,
,
,且
是半徑,
是
的切線;
①設(shè)
半徑為
,則
在中,
,解得
,
②由(1)得△CDO≌△CAO,
∴AC=CD=12,
在Rt△AOC中,OC=,
∵∠AOG=∠COA,
∴Rt△OAG∽△OCA,
∴,
即,
∴OG=,
∴CG=OC-OG=,
∵OG∥BD,OA=OB,
∴OG為△ABD的中位線,
∴BD=2OG=,
∵CG∥BD,
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過(guò)Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E,B、E是半圓弧的三等分點(diǎn),弧BE的長(zhǎng)為π,則圖中陰影部分的面積為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為△ABC外接圓⊙O的直徑,點(diǎn)P是線段CA延長(zhǎng)線上一點(diǎn),點(diǎn)E在圓上且滿足PE2=PAPC,連接CE,AE,OE,OE交CA于點(diǎn)D.
(1)求證:△PAE∽△PEC;
(2)求證:PE為⊙O的切線;
(3)若∠B=30°,,求證:DO=DP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)是
,點(diǎn)
的坐標(biāo)是
,
為
的中點(diǎn),將
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
后得到
,若反比例函數(shù)
的圖象恰好經(jīng)過(guò)
的中點(diǎn)
,則
的值是( )
A.24B.25C.26D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)
,
,對(duì)稱軸為直線
.
(1)求該拋物線和直線的解析式;
(2)點(diǎn)是直線
上方拋物線上的動(dòng)點(diǎn),設(shè)
點(diǎn)的橫坐標(biāo)為
,試用含
的代數(shù)式表示
的面積,并求出
面積的最大值;
(3)設(shè)P點(diǎn)是直線上一動(dòng)點(diǎn),
為拋物線上的點(diǎn),是否存在點(diǎn)
,使以點(diǎn)
、
、P、
為頂點(diǎn)的四邊形為平行四邊形,若存在,請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)
坐標(biāo),不存在說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出△A2B2C2.
(3)①點(diǎn)B1的坐標(biāo)為 ;②求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A處看一棟樓頂部B處的仰角度數(shù)為α,看這棟樓底部C處的俯角度數(shù)為β,熱氣球A處與樓的水平距離為100m,則這棟樓的高度表示為( )
A.100(tanα+tanβ)mB.100(sinα+sinβ)mC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)
為邊
中點(diǎn),點(diǎn)
在線段
上運(yùn)動(dòng),點(diǎn)
在線段
上運(yùn)動(dòng),連接
,則
周長(zhǎng)的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com