日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知拋物線C:y=ax2+bx+c(a<0)過原點,與x軸的另一個交點為B(4,0),A為拋物線C的頂點.
(1)如圖1,若∠AOB=60°,求拋物線C的解析式;
(2)如圖2,若直線OA的解析式為y=x,將拋物線C繞原點O旋轉180°得到拋物線C′,求拋物線C、C′的解析式;
(3)在(2)的條件下,設A′為拋物線C′的頂點,求拋物線C或C′上使得PB=PA'的點P的坐標.

【答案】分析:(1)先連接AB,根據A點是拋物線C的頂點,且C交x軸于O、B,得出AO=AB,再根據∠AOB=60°,得出△ABO是等邊三角形,再過A作AE⊥x軸于E,在Rt△OAE中,求出OD、AE的值,即可求出頂點A的坐標,最后設拋物線C的解析式,求出a的值,從而得出拋物線C的解析式;
(2)先過A作AE⊥OB于E,根據題意得出OE=OB=2,再根據直線OA的解析式為y=x,得出AE=OE=2,求出點A的坐標,再將A、B、O的坐標代入y=ax2+bx+c(a<0)中,求出a的值,得出拋物線C的解析式,再根據拋物線C、C′關于原點對稱,從而得出拋物線C′的解析式;
(3)先作A′B的垂直平分線l,分別交A′B、x軸于M、N(n,0),由(2)知,拋物線C′的頂點為A′(-2,-2),得出A′B的中點M的坐標,再作MH⊥x軸于H,得出△MHN∽△BHM,則MH2=HN•HB,求出N點的坐標,再根據直線l過點M(1,-1)、N(,0),得出直線l的解析式,求出x的值,再根據拋物線C上存在兩點使得PB=PA',從而得出P1,P2坐標,再根據拋物線C′上也存在兩點使得PB=PA',得出P3,P4的坐標,即可求出答案.
解答:解:(1)連接AB.
∵A點是拋物線C的頂點,且拋物線C交x軸于O、B,
∴AO=AB,
又∵∠AOB=60°,
∴△ABO是等邊三角形,
過A作AD⊥x軸于D,在Rt△OAD中,
∴OD=2,AD=
∴頂點A的坐標為(2,
設拋物線C的解析式為(a≠0),
將O(0,0)的坐標代入,
求得:a=
∴拋物線C的解析式為

(2)過A作AE⊥OB于E,
∵拋物線C:y=ax2+bx+c(a<0)過原點和B(4,0),頂點為A,
∴OE=OB=2,
又∵直線OA的解析式為y=x,
∴AE=OE=2,
∴點A的坐標為(2,2),
將A、B、O的坐標代入y=ax2+bx+c(a<0)中,
∴a=
∴拋物線C的解析式為
又∵拋物線C、C′關于原點對稱,
∴拋物線C′的解析式為

(3)作A′B的垂直平分線l,分別交A′B、x軸于M、N(n,0),
由前可知,拋物線C′的頂點為A′(-2,-2),
故A′B的中點M的坐標為(1,-1).
作MH⊥x軸于H,
∴△MHN∽△BHM,則MH2=HN•HB,即12=(1-n)(4-1),
,即N點的坐標為(,0).
∵直線l過點M(1,-1)、N(,0),
∴直線l的解析式為y=-3x+2,
,解得
∴在拋物線C上存在兩點使得PB=PA',其坐標分別為
P1),P2);
得,
∴在拋物線C′上也存在兩點使得PB=PA',其坐標分別為
P3(-5+,17-3),P4(-5-,17+3).
∴點P的坐標是:P1),P2),P3(-5+,17-3),P4(-5-,17+3).
點評:本題是二次函數的綜合,其中涉及到的知識點有旋轉的性質,點的坐標,待定系數法求二次函數等知識點,難度較大,綜合性較強.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸的精英家教網正半軸交于點C.如果x1、x2是方程x2-x-6=0的兩個根(x1<x2),且△ABC的面積為
152

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作直線y=m(m為常數),與直線BC交于點Q,則在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網廊橋是我國古老的文化遺產.如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數表達式為y=-
140
x2+10,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2(a>0)上有A、B兩點,它們的橫坐標分別為-1,2.如果△AOB(O是坐標原點)是直角三角形,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線經過點A(1,0)、B(2,-3)、C(0,4)三點.
(1)求此拋物線的解析式;
(2)如果點D在這條拋物線上,點D關于這條拋物線對稱軸的對稱點是點C,求點D的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本福利一区 | 色综合激情 | 亚洲三区在线观看 | 日韩不卡一二三 | 欧美一区二区三区在线观看 | 亚洲久草 | 日韩三级电影在线免费观看 | 久草视 | 久久亚洲国产精品 | 91精品综合久久久久久五月天 | 亚洲欧美在线视频 | 亚洲乱码国产乱码精品精 | 亚洲一级电影 | 亚洲一区二区三区中文字幕 | 成人在线播放器 | 1区2区3区视频 | 日韩欧美第一页 | 九九热精品视频 | 欧美成人影院在线 | 欧美一级片免费观看 | 日韩手机专区 | 久久精品日产第一区二区 | 成人av影视在线观看 | 国产精品综合 | 看黄网址| 国产成a | 日日想日日干 | 国产高潮在线观看 | 久久久久久亚洲 | 精品成人 | 国产成人精品一区二区三区视频 | 伊人av超碰久久久麻豆 | 中文字幕一区二区三区免费视频 | 亚洲狠狠爱一区二区三区 | 欧美精品a∨在线观看不卡 国产精品一区二区三区在线 | 国产精品久久久999 日本在线免费观看 | 国产精品久久久久久久久久久久久 | 涩涩鲁亚洲精品一区二区 | 精品欧美黑人一区二区三区 | 午夜精品久久久久久久99黑人 | 日本福利在线 |