【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是_____(填序號)
【答案】①②④
【解析】
由正方形的性質和相似三角形的判定與性質,即可得出結論.
∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正確;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正確;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD與△PDB不會相似;故③錯誤;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PHPC,故④正確;
故答案是:①②④.
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,點P是拋物線上的一個動點,點A的坐標為(0,-3).
(1)如圖①所示,直線l過點Q(0,-1)且平行于x軸,過P點作PB⊥l,垂足為B,連接PA,猜想PA與PB的大小關系,并證明你的猜想.
(2)請利用(1)的結論解決下列問題:
①如圖②所示,設點C的坐標為(2,-5),連接PC,問PA+PC是否存在最小值?如果存在,請并求出點P的坐標;如果不存在,請說明理由.
②若過動點P和點Q(0,-1)的直線交拋物線于另一點D,且PA=4AD,求直線PQ的表達式(圖③為備用圖).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數m,方程總有兩個不相等的實數根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4.
(1)尺規作圖:將△ABC繞AC的中點O為旋轉180°,點B的對應點為B′(保留作圖痕跡,不寫做法);
(2)求點B與點B′之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 是
的中線,
是線段
上一點(不與點
重合).
交
于點
,
,連結
.
(1)如圖1,當點與
重合時,求證:四邊形
是平行四邊形
(2)如圖2,當點不與
重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長交
于點
,若
,且
.
①求的度數;
②當,
時,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發,沿著AB以每秒4cm的速度向B點運動;同時點Q從C點出發,沿著CA以每秒3cm的速度向A點運動,設運動時間為x秒.
(1)x為何值時,PQ∥BC;
(2)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長;若不存在,請說明理由;
(3)當=
時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,平面直角坐標系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數)
(1)若關于x的反比例函數y=過點A,求t的取值范圍.
(2)若關于x的一次函數y=bx過點A,求t的取值范圍.
(3)若關于x的二次函數y=x2+bx+b2過點A,求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形廣告牌架在樓房頂部,已知CD=2m,經測量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的長.(參考數據:tan37°≈0.75, ≈1.732,結果精確到0.1m)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com