日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D.AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.
(1)求證:CE=CF;
(2)若AD=
1
4
AB,CF=
1
3
CB,△ABC、△CEF、△ADE的面積分別為S△ABC、S△CEF、S△ADE,且S△ABC=24,則S△CEF-S△ADE=
2
2

(3)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示,試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
分析:(1)求出∠CAF=∠BAF,∠B=∠ACD,根據(jù)三角形外角性質(zhì)得出∠CEF=∠CFE,即可得出答案;
(2)求出△CAF和△ACD的面積,再相減即可求出答案;
(3)過F作FH⊥AB于H,求出CF=FH=CE,證△CEE′≌△FHB,推出CE′=BF,都減去FE′即可.
解答:(1)證明:如圖(1),
∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B,
∵AF平分∠CAB,
∴∠CAE=∠BAF,
∴∠ACD+∠CAE=∠B+∠BAF,
∴∠CEF=∠CFE,
∴CE=CF.

(2)解:∵S△ACB=24,AD=
1
4
AB,CF=
1
3
CB,
∴S△ACD=S△ADE+S△ACE=
1
4
×24=6①,
S△ACF=S△CEF+S△ACE=
1
3
×24=8②,
∴②-①得:S△CEF-S△ADE=8-6=2,
故答案為:2.

(3)BE′=CF,
證明:如圖(2),過F作FH⊥AB于H,
∵CD⊥AB,
∴CD∥FH,
∴∠ECE′=∠HFB,
∵△ADE沿AB平移到△A′D′E′,
∴DE=D′E′,DE=D′E′,
∴四邊形EDD′E′是平行四邊形,
∴EE′∥AB,
∵∠CDB=90°,
∴∠CEE′=∠CDB=90°=∠FHB,
∵AF平分∠CAB,∠ACF=90°,F(xiàn)H⊥AB,
∴CF=FH,
∵CF=CE,
∴CE=FH,
在△CEE′和△FHB中
∠CEE′=FHB
CE=FH
∠ECE′=∠HFB

∴△CEE′≌△FHB(ASA),
∴CE′=BF,
∴CE′-FE′=BF-E′F,
即BE′=CF.
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定,等腰三角形的判定,三角形面積,三角形內(nèi)角和定理,角平分線性質(zhì)的應(yīng)用,注意:全等三角形的對應(yīng)邊相等,對應(yīng)角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)(1)如圖1所示,在平行四邊形ABCD中,E、F是對角線BD上的兩點(diǎn),且BE=DF,連接AE、CF.請你猜想:AE與CF有怎樣的數(shù)量關(guān)系?并對你的猜想加以證明.
(2)如圖2所示,在Rt△ABC中,∠BAC=90°,點(diǎn)D在BC邊上,且△ABD是等邊三角形.若AB=2,求△ABC的周長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中江縣二模)如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點(diǎn),與斜邊AB交于點(diǎn)E,連接BO、ED,且BO∥ED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)連接CE,求證:AE2=AD•AC;
(3)若⊙O的半徑為5,sin∠DFE=
35
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天河區(qū)一模)如圖(1),AB、BC、CD分別與⊙O相切于點(diǎn)E、F、G,且AB∥CD,若OB=6,OC=8,
(1)求BC和OF的長;
(2)求證:E、O、G三點(diǎn)共線;
(3)小葉從第(1)小題的計(jì)算中發(fā)現(xiàn):等式
1
OF2
=
1
OB2
+
1
OC2
成立,于是她得到這樣的結(jié)論:
如圖(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,CD=h,則有等式
1
a2
+
1
b2
=
1
h2
成立.請你判斷小葉的結(jié)論是否正確,若正確,請給予證明,若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.
求證:AD=
14
AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點(diǎn),且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产美女在线观看免费 | 国产欧美一区二区三区在线看 | 欧洲视频一区二区 | 久久久www成人免费精品 | av黄色在线 | 欧日韩不卡在线视频 | 国产精品久久久久一区二区三区共 | 日韩精品一区二区三区第95 | 欧美午夜视频在线观看 | 综合久久一区二区三区 | 99国内精品久久久久久久 | 中文字幕乱码一区二区三区 | 欧美日韩国产高清 | 色婷婷av一区二区三区软件 | 国产精品欧美一区二区三区不卡 | 日韩中文字幕在线 | 国产一区二区三区精品在线 | 久久999| 亚洲综合一区二区三区 | 亚洲精品www | 日韩av在线一区二区三区 | 欧美激情精品一区 | 欧洲免费av | 欧美国产日本一区 | av色资源 | 在线久草 | 草视频在线 | 国产在线视频网站 | 天天摸夜夜摸爽爽狠狠婷婷97 | 亚洲天堂美女视频 | 色综合激情 | 日韩国产欧美视频 | 亚洲精品久久久久 | 98久久久| 国产乱码精品一区二区三区忘忧草 | 九九精品视频在线观看 | 男人天堂亚洲天堂 | 久久久www成人免费精品 | 日本妇人成熟免费视频 | 91久久国产综合久久 | 国产精品久久久久9999 |