【題目】如圖,已知△ABC的面積為24,點D在線段AC上,點D在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____.
【答案】8
【解析】
連接EC,過A作AM∥BC交FE的延長線于M,求出平行四邊形ACFM,根據等底等高的三角形面積相等得出△BDE的面積和△CDE的面積相等,△ADE的面積和△AME的面積相等,推出陰影部分的面積等于平行四邊形ACFM的面積的一半,求出CF×hCF的值即可.
連接DE、EC,過A作AM∥BC交FE的延長線于M,
∵四邊形CDEF是平行四邊形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四邊形ACFM是平行四邊形,
∵△BDE邊DE上的高和△CDE的邊DE上的高相同,
∴△BDE的面積和△CDE的面積相等,
同理△ADE的面積和△AME的面積相等,
即陰影部分的面積等于平行四邊形ACFM的面積的一半,是×CF×hCF,
∵△ABC的面積是24,BC=3CF
∴BC×hBC=
×3CF×hCF=24,
∴CF×hCF=16,
∴陰影部分的面積是×16=8,
故答案為:8.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( )
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A城出發沿一條筆直公路勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時間t(小時)之間的函數關系如圖所示.
(1)A,B兩城相距 千米,乙車比甲車早到 小時;
(2)甲車出發多長時間與乙車相遇?
(3)若兩車相距不超過20千米時可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時間有多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線滿足條件:(1)在
時,
隨
的增大而增大,在
時,
隨
的增大而減小;(2)與
軸有兩個交點,且兩個交點間的距離小于
.以下四個結論:①
;②
;③
;④
,說法正確的個數有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】揚州某中學七年級一班 40 名同學第二次為四川災區捐款,共捐款 2000 元,捐款情況如下表:
捐款(元) | 20 | 40 | 50 | 100 |
人數 | 10 | 8 |
表格中捐款 40 元和 50 元的人數不小心被墨水污染已看不清楚、若設捐款 40 元的有 x 名同學,捐款 50 元的有y 名同學,根據題意,可得方程組( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,A(-1,5)、B(-1,0),C(-4,3).
(1)△ABC的面積是 .
(2)在下圖中畫出△ABC向下平移2個單位,向右平移5個單位后的△A1B1C1.
(3)寫出點A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,∠ABC=60°,點E是AB的中點,連接CE、OE,若AB=2BC,下列結論:①∠ACD=30°;②當BC=4時,BD=;③CD=4OE;④S△COE=
S四邊形ABCD.其中正確的個數有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃一次性購進、
兩種型號洗衣機80臺,若購進
型號洗衣機50臺、
型號洗衣機30臺,則需55000元;若購進
型號洗衣機30臺、
型號洗衣機50臺,則需6500元.
(1)求、
兩種型號的洗衣機的進價各為多少元;
(2)若每臺A型號洗衣機售價550元,每臺B型號洗衣機售價1080元,該商場計劃銷售完這80臺洗衣機總利潤不少于5200元,求最多購進型號洗衣機多少臺?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com