日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.
【答案】分析:連接OQ,由OB=OQ與RP=RQ,根據等邊對等角的性質,可得∠B=∠BQO與∠RPQ=PQR,又由OA⊥OB與對頂角相等,可得∠BQO+∠PQR=90°,即可證得直線QR是⊙O的切線.
解答:證明:連接OQ,
∵OB=OQ,
∴∠B=∠BQO,
∵PR=QR,
∴∠RPQ=∠PQR,
∵OA⊥OB,
∴∠B+∠BPO=90°,
∵∠BPO=∠RPQ=∠PQR,
∴∠BQO+∠PQR=90°,
即OQ⊥QR,
∴直線QR是⊙O的切線.
點評:此題考查了切線的判定、等腰三角形的性質以及垂直的定義.此題難度不大,解題的關鍵是掌握數形結合思想的應用,注意掌握輔助線的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PA=1,試求PQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點,BP的延長線交⊙O于點Q,點R在OA的延長線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2
(3)當RA≤OA時,試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,OA和OB是⊙O的半徑,且OA⊥OB,P是OA上的任意一點,BP的延長線交⊙O于D,PD的垂直平分線交OA的延長線于點C,連接CD.
(1)求證:CD是⊙O的切線;
(2)若P是OA延長線上的任意一點,其他條件不變,CD還是⊙O的切線嗎?如果是,在備用圖②中作出相應圖形(請保留作圖痕跡),并論證.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久久久久毛片 | 欧洲一区在线观看 | 看a网址 | 精品久久久久久久久久久久久久久 | 久久久激情 | 日韩不卡一区 | 国产精品毛片一区二区三区 | 国产一区二区三区四区在线观看 | 欧美14一18处毛片 | 日本在线精品视频 | 日本精品一区二区三区在线观看视频 | 国产一级电影网 | 日本黄色一级片视频 | 日韩精品亚洲专区在线观看 | 国产激情偷乱视频一区二区三区 | 日本久久精品一区二区 | 国产精品久久久久久福利一牛影视 | 日韩免费网站 | 精品播放 | 精品一区二区免费 | 久久av一区二区三区 | 天堂一区二区三区四区 | 91精品国产91久久久久久吃药 | 97超碰超碰 | 成人免费在线观看 | 色性网| 国产99久久精品一区二区永久免费 | 黄色毛片在线播放 | 亚洲日本韩国欧美 | 日本高清视频在线播放 | 在线一区观看 | 国产婷婷久久 | 国产老女人精品毛片久久 | 成人综合在线观看 | 亚洲欧美精品 | 欧美视频二区 | 欧美3区 | 国产精品1区2区3区 午夜视频网站 | 国产一区二区三区免费观看 | 精品国产乱码久久久久久1区2区 | 中文字幕 国产 |