【題目】在如圖網格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并直接寫出A、C兩點的坐標;
(3)根據(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標.
科目:初中數學 來源: 題型:
【題目】已知,在△ABC中,∠ABC=90°,AB=BC=4,點O是邊AC的中點,連接OB,將△AOB繞點A順時針旋轉α°至△ANM,連接CM,點P是線段CM的中點,連接PB,PN.
(1)如圖1,當α=180時,請直接寫出線段PN和PB之間滿足的位置和數量關系;
(2)如圖2,當0<α<180時,請探索線段PN和PB之間滿足何位置和數量關系?證明你的結論
(3)當△AOB旋轉至C,M,N三點共線時,線段BP的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,連接CE,連接DE交AC于F,AD=4,AB=6.
(1)求證:△ADC∽△ACB;
(2)求AC的值;
(3)求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正比例函數y1=k1x的圖象與反比例函數y2=(x>0)的圖象相交于點A(
,2
),點B是反比例函數圖象上一點,它的橫坐標是3,連接OB,AB,則△AOB的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D為直角△ABC中斜邊AC上一點,且AB=AD,以AB為直徑的⊙O交AD于點F,交BD于點E,連接BF,BF.
(1)求證:BE=FE;
(2)求證:∠AFE=∠BDC;
(3)已知:sin∠BAE=,AB=6,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+x+6及一次函數y=﹣x+m,將該二次函數在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(如圖所示).
(1)求二次函數y=﹣x2+x+6的頂點坐標和x軸的交點坐標;
(2)直接寫出新函數對應的解析式;
(3)當直線y=﹣x+m與新圖象有四個交點時,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com