【題目】已知:如圖,在矩形中,
是對角線,點
為矩形外一點且滿足
,
,
交
于點
,連接
,過點
作
交
于
.
(1)若,
,求矩形
的面積;
(2)若,試判斷線段
、
、
之間的關系,并證明.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.
(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.
(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①已知線段CD所在直線的解析式為y=﹣x+3,分別交坐標軸于點C、D,
(1)若以點B(1,0)為圓心的⊙B半徑為r,⊙B與線段CD只有一個交點,則r滿足 .
(2)如圖②,如果點P從(﹣5,0)出發,以1個單位長度的速度沿x軸向右作勻速運動,當運動時間到t秒時,以點P為圓心、t個單位長度為半徑的圓P與線段CD所在直線有兩個交點,分別為點E、F,且∠EPF=2∠OCD,求此時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為預防禽流感,上海建立了候鳥監測站,某候鳥監測站將一天7點至17點監測到上空飛過的候鳥數制成了如下直方圖:
(1)候鳥飛過的高峰期在一天的______;
(2)這一天7點至17點期間,平均每小時飛過上空的候鳥有______只;
(3)每兩個小時飛過上空的候鳥數的中位數是______;
(4)若一天飛過上空的候鳥數按此估算,該監測站九月份監測到的候烏只數約是______只;
(5)7時—9時段的頻率是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(3,1),B(1,0),PQ是直線y=x上的一條動線段且PQ=(Q在P的下方),當AP+PQ+QB取最小值時,點Q坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有三張正面分別標有數字:-1,1,2的卡片,它們除數字不同外其余全部相同,現將它們背面朝上,洗勻后從中隨機抽出一張記下數字,放回洗勻后再從中隨機抽出一張記下數字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數字的所有結果;
(2)將第一次抽出的數字作為點的橫坐標x,第二次抽出的數字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=16cm,AD=4cm,點P,Q分別從A,B同時出發,P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動設運動時間為x(秒),設△BPQ的面積為ycm2.
(1)求y關于x的函數關系式,并寫出x的取值范圍;
(2)當△BPQ面積有最大值時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C′處,若∠ADB=46°,則∠DBE的度數為 °.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.
(畫一畫)
如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設為MN(點M,N分別在邊AD,BC上),利用直尺和圓規畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);
(算一算)
如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點A,B分別落在點A′,B′處,若AG=,求B′D的長;
(驗一驗)
如圖4,點K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點A,B分別落在點A′,B′處,小明認為B′I所在直線恰好經過點D,他的判斷是否正確,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com