【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點E,過A作AF垂直BE于點F,過C作CG垂直BE于點G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
【答案】9.
【解析】
試題由ABCD為正方形,根據正方形的性質得到AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又根據CG與BE垂直得到∠BCG+∠CBG=90°,根據同角的余角相等得到一對角相等,又根據一對直角相等,利用“AAS”即可得到三角形BCG與三角形FBA全等,根據全等三角形的對應邊相等得到AF與BG相等,又因為FH=FB,從而得到AH=FG,然后由垂直得到一對直角相等,加上一個公共角,得到三角形APH與三角形ABF相似,根據相似得比例,設AH=FG=x,用x表示出PH,由四邊形PHFB一組對邊平行,另一組對邊不平行得到此四邊形為梯形,根據梯形的面積公式,由上底PH,下底為BF=3,高FH=3,表示出梯形的面積;然后在三角形BCG與三角形ECG中,根據同角的余角相等,再加上一對直角得到兩三角形相似,根據相似得比例,用含x的式子表示出GE,由CG=3,利用表示出的GE,利用三角形的面積公式表示出直角三角形CGE的面積,把表示出的兩面積相加,化簡即可得到值.
試題解析:∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,
又CG⊥BE,即∠BGC=90°,
∴∠BCG+∠CBG=90°,
∴∠ABF=∠BCG,
又AF⊥BG,
∴∠AFB=∠BGC=90°,
∴△ABF≌△BCG,
∴AF=BG,BF=CG=FH=3,
又∵FH=BF,
∴AH=FG,設AH=FG=x,
∵PH⊥AF,BF⊥AF,
∴∠AHP=∠AFB=90°,又∠PAH為公共角,
∴△APH∽△ABF,
∴,即PH=
,
∵FH∥BF,BP不平行FH,
∴四邊形BFHP為梯形,其面積為;
又∵∠BCG+∠ECG=90°,∠ECG+∠BEC=90°,
∴∠BCG=∠BEC,又∠BGC=∠CGE=90°,
∴△BCG∽△CEG,
∴,即GE=
,
故Rt△CGE的面積為×3×
,
則△CGE與四邊形BFHP的面積之和為.
考點: 1.正方形的判定與性質;2.全等三角形的判定與性質.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,
,且
,
滿足
,點
為
上一個動點(不與
,
)重合),連接
.
圖1 圖2
(1)直接寫出 ___________,
___________;
(2)如圖1,過點作
的垂線交過點
平行于
軸的直線于點
,若點
,
求點的坐標;
(3)如圖2,以為斜邊在
右側作等腰
,
.連接
,當點
從
向
運動過程中,
的面積是否發生變化,請判斷并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數量是乙每天加工數量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現有 3000 個這種零件的加工任務,甲單獨加工一段時間后另有安排,剩余任務由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如圖的折線圖,則符合這一結果的實驗最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 擲一枚質地均勻的正六面體骰子,向上一面的點數是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點,N為y軸上一點, 以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD中,點E是邊AD上動點,點F是邊BC上動點,連接EF,把矩形ABCD沿直線EF折疊,點B恰好落在邊AD上,記為點G;如圖2,把矩形展開鋪平,連接BE,FG.
(1)判斷四邊形BEGF的形狀一定是 ,請證明你的結論;
(2)若矩形邊AB=4,BC=8,直接寫出四邊形BEGF面積的最大值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平行四邊形在平面直角坐標系中的位置如圖所示,
,
,AC=4,把平行四邊形
繞點
逆時針方向旋轉,使點
落在
軸上,則旋轉后點
的對應點
的坐標為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com