如圖,在□ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉90°得到線段EF,點P為直線CD上一點(不與點C重合).
(1)在圖1中畫圖探究:
當點P在CD延長線上時,連結EP并把EP繞點E逆時針旋轉90°得到線段EQ.作直線QF交直線CD于H,求證:QF⊥CD.
(2)探究:結合(1)中的畫圖步驟,分析線段QH、PH與CE之間是否存在一種特定的數量關系?請在下面的空格中寫出你的結論;若存在,直接填寫這個關系式.
①當點P在CD延長線上且位于H點右邊時,
QH-PH=2CE
QH-PH=2CE
;
②當點P在邊CD上時,
QH+PH=2CE
QH+PH=2CE
.
(3)若AD=2AB=6,AE=1,連接DF,過P、F兩點作⊙M,使⊙M同時與直線CD、DF相切,求⊙M的半徑是多少?
