【題目】如圖,小巷左右兩側是豎直的墻,一架梯子AC斜靠在右墻,測得梯子頂端距離地面AB=2米,梯子與地面夾角α的正弦值sinα=0.8.梯子底端位置不動,將梯子斜靠在左墻時,頂端距離地面2.4米,則小巷的寬度為( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
科目:初中數學 來源: 題型:
【題目】如圖1,在中,點D、E分別在AB、AC上,
,
,
求證:
;
若
,把
繞點A逆時針旋轉到圖2的位置,點M,P,N分別為DE,DC,BC的中點,連接MN,PM,PN.
判斷
的形狀,并說明理由;
把
繞點A在平面內自由旋轉,若
,
,試問
面積是否存在最大值;若存在,求出其最大值
若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是底邊BC的中點,作DE⊥AB于E,DF⊥AC于F
求證:DE=DF.
證明:∵AB=AC,∴∠B=∠C①.
在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF②.∴DE=DF③.
(1)上面的證明過程是否正確?若正確,請寫出①、②和③的推理根據.
(2)請你寫出另一種證明此題的方法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列給出的方程中,屬于一元二次方程的是( )
A. x(x﹣1)=6B. x2+=0C. (x﹣3)(x﹣2)=x2D. ax2+bx+c=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應香洲區全面推進書香校園建設的號召,班長小青隨機調查了若干同學一周課外閱讀的時間t(單位:小時),將獲得的數據分成四組,繪制了如下統計圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據圖中信息,解答下列問題:
(1)這項工作中被調查的總人數是多少?
(2)補全條形統計圖,并求出表示A組的扇形統計圖的圓心角的度數;
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2-(m+1)x+(m2+1)=0.
(1)若該方程有實數根,求m的值.
(2)對于函數y1=x2-(m+1)x+(m2+1),當x>1時,y1隨著x的增大而增大.
①求m的范圍.
②若函數y2=2x+n與函數交于y軸上同一點,求n的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2,OP=1,求線段BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經過點A、B.點P是x軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設點P的橫坐標為m.
(1)點A的坐標為 .
(2)求這條拋物線所對應的函數表達式.
(3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.
(4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=,AE=1.將正方形AEFG繞點A逆時針旋轉,設BE的延長線交直線DG于點P,當點P,G第一次重合時停止旋轉.在這個過程中:
(1)∠BPD=______度;
(2)點P所經過的路徑長為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com