【題目】如圖,正方形中,點
是
邊上的任一點,連接
并將線段
繞點
順時針旋轉
得到線段
,在
邊上取點
使
,連接
.
(1)求證:四邊形是平行四邊形;
(2)線段與
交于點
,連接
,若
,則
與
存在怎樣的數量關系?請說明理由.
【答案】(1)見解析;(2)BM=MC.理由見解析.
【解析】
(1)根據正方形的性質可得AB=BC,∠ABC=∠C,然后利用“邊角邊”證明△ABM和△BCP全等;根據全等三角形對應邊相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,從而得到MN∥BP,然后根據一組對邊平行且相等的四邊形是平行四邊形證明即可;
(2)根據同角的余角相等求出∠BAM=∠CMQ,然后得出△ABM和△MCQ相似,根據相似三角形對應邊成比例可得,再證得△AMQ∽△ABM,根據相似三角形對應邊成比例可得
,從而得到
,即可得解.
解:(1)如圖,
在正方形ABCD中,AB=BC,∠ABC=∠C=90°,
在△ABM和△BCP中,
∴△ABM≌△BCP(SAS).
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并將線段AM繞M順時針旋轉90°得到線段MN,
∴AM⊥MN,且AM=MN
∴MN∥BP,MN =BP
∴四邊形BMNP是平行四邊形;
(2)BM=MC.理由如下:
∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠ABC=∠C=90°,
∴△ABM∽△MCQ,
∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
∴BM=MC.
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A(﹣4,0),點E (4,0),以AO為直徑作⊙D,點G是⊙D上一動點,以EG為腰向下作等腰直角三角形EGF,連接DF,則DF的最大值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上,小明和小亮設計了A、B兩種游戲方案:
方案A:隨機抽一張撲克牌,牌面數字為5時小明獲勝;否則小亮獲勝.
方案B:隨機同時抽取兩張撲克牌,兩張牌面數字之和為偶數時,小明獲勝;否則小亮獲勝.
請你幫小亮選擇其中一種方案,使他獲勝的可能性較大,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2﹣3ax+c的圖象與x軸交于點A、B,與y軸交于點c直線y=﹣x+4經過點B、C.
(1)求拋物線的表達式;
(2)過點A的直線y=kx+k交拋物線于點M,交直線BC于點N,連接AC,當直線y=kx+k平分△ABC的面積,求點M的坐標;
(3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當直線y=kx+k與翻折后的整個圖象只有三個交點時,求k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中,D為BC邊上一點,E為AC邊上一點,∠ADE=60°
(1)求證:△ABD∽△DCE;
(2)若BD=4,CE=,求△ABC的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數圖象上的一對對稱點,一次函數的圖象過點B、D.
(1)請直接寫出D點的坐標.
(2)求二次函數的解析式.
(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:在線段MN上存在點P、Q將線段MN分為相等的三部分,則稱P、Q為線段MN的三等分點.
已知一次函數y=﹣x+3的圖象與x、y軸分別交于點M、N,且A、C為線段MN的三等分點(點A在點C的左邊).
(1)直接寫出點A、C的坐標;
(2)①二次函數的圖象恰好經過點O、A、C,試求此二次函數的解析式;
②過點A、C分別作AB、CD垂直x軸于B、D兩點,在此拋物線O、C之間取一點P(點P不與O、C重合)作PF⊥x軸于點F,PF交OC于點E,是否存在點P使得AP=BE?若存在,求出點P的坐標?若不存在,試說明理由;
(3)在(2)的條件下,將△OAB沿AC方向移動到△O'A'B'(點A'在線段AC上,且不與C重合),△O'A'B'與△OCD重疊部分的面積為S,試求當S=時點A'的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com