【題目】如圖1,在平面直角坐標系中,直線與拋物線
交于
兩點,其中
,
.該拋物線與
軸交于點
,與
軸交于另一點
.
(1)求的值及該拋物線的解析式;
(2)如圖2.若點為線段
上的一動點(不與
重合).分別以
、
為斜邊,在直線
的同側作等腰直角△
和等腰直角△
,連接
,試確定△
面積最大時
點的坐標.
(3)如圖3.連接、
,在線段
上是否存在點
,使得以
為頂點的三角形與△
相似,若存在,請直接寫出點
的坐標;若不存在,請說明理由.
【答案】(1);(2)當
,即
時,
最大,此時
,所以
;(3)存在點
坐標為
或
.
【解析】(1)把A與B坐標代入一次函數解析式求出m與n的值,確定出A與B坐標,代入二次函數解析式求出b與c的值即可;
(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN為直角,由兩直角邊乘積的一半表示出三角形MPN面積,利用二次函數性質確定出三角形面積最大時P的坐標即可;
(3)存在,分兩種情況,根據相似得比例,求出AQ的長,利用兩點間的距離公式求出Q坐標即可.
(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3).
∵y=﹣x2+bx+c經過點A與點B,∴,解得:
,則二次函數解析式為y=﹣x2+6x﹣5;
(2)如圖2,△APM與△DPN都為等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN為直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,設AP=m,則有DP=4﹣m,∴PM=m,PN=
(4﹣m),∴S△MPN=
PMPN=
×
m×
(4﹣m)=﹣
m2﹣m=﹣
(m﹣2)2+1,∴當m=2,即AP=2時,S△MPN最大,此時OP=3,即P(3,0);
(3)存在,易得直線CD解析式為y=x﹣5,設Q(x,x﹣5),由題意得:∠BAD=∠ADC=45°,分兩種情況討論:
①當△ABD∽△DAQ時,=
,即
=
,解得:AQ=
,由兩點間的距離公式得:(x﹣1)2+(x﹣5)2=
,解得:x=
,此時Q(
,﹣
);
②當△ABD∽△DQA時,=1,即AQ=
,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此時Q(2,﹣3).
綜上,點Q的坐標為(2,﹣3)或(,﹣
).
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知二次函數y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點A,B(點A在點B的左側),與y軸交于點C,頂點為D.
(1)求點A,B的坐標;
(2)若M為對稱軸與x軸交點,且DM=2AM.
①求二次函數解析式;
②當t﹣2≤x≤t時,二次函數有最大值5,求t值;
③若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在每個小正方形的邊長為1的網格中,點A、B均為格點.
(Ⅰ)AB的長等于_____.
(Ⅱ)若點C是以AB為底邊的等腰直角三角形的頂點,點D在邊AC上,且滿足S△ABD=S△ABC.請在如圖所示的網格中,用無刻度的直尺,畫出線段BD,并簡要說明點D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在全國初中數學聯賽中,將參賽兩個班學生的成績(得分均為整數)進行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.25、0.15、0.10、0.10,第二組的頻數是40.
(1)第二小組的頻率是_____,并補全這個頻率分布直方圖;
(2)這兩個班參賽的學生人數是_________;
(3)這兩個班參賽學生的成績的中位數落在第______組內.(不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與反比例函數
在第二象限內的圖象相交于點
,將直線
向上平移后與反比例函數圖象在第二象限內交于點
,與
軸交于點
,且
的面積為3,則直線
的關系式為:________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
,
,
是
上一點,連接
(1)如圖1,若,
是
延長線上一點,
與
垂直,求證:
(2)過點作
,
為垂足,連接
并延長交
于點
.
①如圖2,若,求證:
②如圖3,若是
的中點,直接寫出
的值(用含
的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形的邊長為
,
在正方形外,
,過
作
于
,直線
,
交于點
,直線
交直線
于點
,則下列結論正確的是( )
①;②
;③
;
④若,則
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
.動點
從點
出發,沿
以每秒
個單位長度的速度向終點
運動,當點
與點
、
不重合時,過點
作
交折線
于點
,以
為邊向左作正方形
.設正方形
與
重疊部分圖形的面積為
(平方單位),點
運動的時間為
(秒).
備用圖
(1)用含的代數式表示
的長.
(2)直接寫出點在
內部時
的取值范圍.
(3)求與
之間的函數關系式.
(4)直接寫出點落在
的中位線所在直線上時
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副三角板(△ABC與△DEF)如圖放置,點D在AB邊上滑動,DE交AC于點G,DF交BC于點H,且在滑動過程中始終保持DG=DH,若AC=2,則△BDH面積的最大值是( )
A.3B.3C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com