日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D. 點M從O點出發,以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,
求出點Q的坐標;若不存在,說明理由;
(4)在拋物線上是否存在點P,使得△MBQ與△CPQ相似?若存在,直接寫出點P的坐標;若不存在,說明理由.

【答案】分析:(1)已知拋物線解析式,令y=0,x=0,可求B、C兩點坐標;
(2)設點P的坐標為P(x,y),由S四邊形OBPC=S△OPC+S△OPB可列出S與x的函數關系式,由于B(3,0),得出0≤x≤3;
(3)根據BQ為一腰,有兩種可能:①BQ=DQ,②BQ=BD=2,都可由相似三角形的對應邊的比,求出OM、MQ的長;
(4)根據當△MBQ∽△PCQ以及當△MBQ∽△CPQ,分別進行計算得出P點坐標即可.
解答:解:(1)把x=0代入y=-x2+x+2得點C的坐標為C(0,2),
把y=0代入y=-x2+x+2得點B的坐標為B(3,0);

(2)如圖1,連接OP,設點P的坐標為P(x,y)
S四邊形OBPC=S△OPC+S△OPB=×2×x+×3×y,
=x+(-x2+x+2),
=-x2+3x+3,
∵點M運動到B點上停止,
∴0≤x≤3,
∴S=-(x-2+(0≤x≤3);

(3)存在.
∵BC==
①如圖2,若BQ=DQ,
∵BQ=DQ,BD=2,∴BM=1,
∴OM=3-1=2,
∴tan∠OBC===
∴QM=
所以Q的坐標為Q(2,).
②如圖3,若BQ=BD=2,
∵QM∥CO,
∴△BQM∽△BCO,
==
=
∴QM=
=
=
∴BM=
∴OM=3-
∴Q點的坐標為:(3-);

(4)如圖4,當△MBQ∽△PCQ,
則∠BMQ=∠QPC=90°,
此時PC∥AB,
故P點縱坐標為:2,代入二次函數解析式,即可得出:
2=-x2+x+2,
解得:x=0或2,
故P點坐標為:(2,2),
當△MBQ∽△CPQ,
則∠PCQ=∠BMQ=90°,
即PC⊥BC,
∵C點坐標為:(0,2),B點坐標為:(3,0),
設直線BC的解析式為:y=kx+b,

解得:k=-
則直線BC的解析式為:y=-x+2,
故與直線BC垂直且過C點的直線EF解析式為:y=x+2,
將y=x+2與y=-x2+x+2聯立得:
x+2=-x2+x+2,
解得:x=0或-
則y=2或
當x=-時,P點在第2象限,故此時不符合題意,
綜上所述,拋物線上存在點P,使得△MBQ∽△PCQ,此時P點坐標為:(2,2).
點評:本題考查了二次函數解析式的運用,坐標系里面積表示方法,及尋找特殊三角形的條件問題,涉及分類討論和相似三角形的運用,根據已知與圖形進行分類討論是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•黃岡)如圖,已知拋物線的方程C1:y=-
1m
(x+2)(x-m)(m>0)與x軸相交于點B、C,與y軸相交于點E,且點B在點C的左側.
(1)若拋物線C1過點M(2,2),求實數m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)條件下,在拋物線的對稱軸上找一點H,使BH+EH最小,并求出點H的坐標;
(4)在第四象限內,拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•道外區三模)如圖,已知拋物線y=ax2+bx+c過點A(-1,0)、B(3,0)、C(0,3)
(1)求此拋物線的解析式.
(2)設拋物線的頂點為D,連接CD、BD,求△BCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2-4x+c經過點A(0,-6)和B(3,-9).
(1)求出拋物線的解析式;寫出拋物線的對稱軸方程及頂點坐標;
(2)拋物線與x軸交于C、D兩點,在拋物線上能否找一點N使三角形CDN的面積是三角形CDA的1.5倍?若存在求出N點坐標,不存在說明理由;
(3)若點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關于拋物線的對稱軸對稱.在拋物線的對稱軸上尋找一點M,使得△QMA的周長最小.

查看答案和解析>>

科目:初中數學 來源:2010年湘西自治州初中畢業學業考試數學試題 題型:044

如圖,已知拋物線y=ax2-4x+c經過點A(0,-6)和B(3,-9),

(1)求出拋物線的解析式;

(2)寫出拋物線的對稱軸方程及頂點坐標;

(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關于拋物線的對稱軸,對稱,求m的值及點Q的坐標;

(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得△QMA的周長最小.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99九九久久 | 亚洲免费高清 | 可以在线观看的黄色 | 欧美高清在线 | 国产欧美精品区一区二区三区 | 日日综合 | 精品国产一区二区三区久久久蜜月 | 亚洲精品日韩色噜噜久久五月 | 欧美激情精品久久久久久变态 | 一级免费电影 | 欧美 | 91精品国产高清自在线观看 | 粉嫩高清一区二区三区精品视频 | 97在线视频免费 | 成人久久久久爱 | 成人高清在线观看 | 久久婷婷香蕉 | 免费一区二区三区 | 国产高清精品网站 | 电影午夜精品一区二区三区 | 免费看黄色的网址 | 国产精品久久久久久久岛一牛影视 | 女人色偷偷aa久久天堂 | 欧美精品网站 | 免费v片| 欧美激情在线播放 | 亚洲成人精品久久 | 国产精品久久久久久久久久久久午夜片 | 日本不卡在线观看 | 日韩中文字幕一区二区 | 在线免费视频一区 | 中文字幕国产在线观看 | 日韩一区二区在线观看 | 国产亚洲欧美一区二区三区 | 91精品国产色综合久久不卡98 | 成人免费视频国产免费麻豆 | 亚洲一二三四五六区 | 国产精品视频在线观看 | 一级片欧美 | 二区在线观看 | 午夜激情视频在线观看 |