日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】ABC中,∠C90°,D是邊BC上一點,連接AD,若∠BAD3CAD90°,DCa,BDb,則AB________. (用含a,b的式子表示)

【答案】2a+b.

【解析】

延長BC至點E,使CE=CD=a,連接AE,利用∠BAD3CAD90°,∠CAB+B90°,證得∠B=2CAD,再利用CE=CD,ACCD,證得△AED是等腰三角形,推出∠E=EAB,

由此得到AB=EB=2a+b.

如圖,延長BC至點E,使CE=CD,連接AE,

∵∠ACB=90°,

∴∠CAB+∠B=90°,AC⊥CD,

∵∠BAD+3∠CAD=90°,∠BAD+∠CAD=∠BAC,

∴∠B=2∠CAD,

∵CE=CD,AC⊥CD,

∴AC垂直平分ED,

∴AE=AD,即△AED是等腰三角形,

∴∠EAC=∠CAD,

∴∠EAD=2∠CAD=∠B,

∴∠EAB=∠B+∠BAD,

∵∠E=∠ADE=∠B+∠BAD,

∴∠E=∠EAB,

∴AB=EB,

∵EB=EC+CD+BD=a+a+b=2a+b,

∴AB=2a+b.

故填:2a+b.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,以原點為旋轉中心,把點A(3,4)逆時針旋轉90°,得到點B,則點B的坐標為(  )

A. (4,﹣3) B. (﹣4,3) C. (﹣3,4) D. (﹣3,﹣4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠BAC65°,D為∠BAC內部一點,過DDBABB,DCACC,設點E、點F分別為AB、AC上的動點,當△DEF的周長最小時,∠EDF的度數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】基善一日捐冊活動中,為了解某校學生的捐款情況,抽樣調查了該校部分學生的捐款數(單位:元),并繪制成下面的統計圖.

1)本次調查中,一共調查了________名同學;

2)抽查學生捐款數額的眾數是_______元,中位數是_______元;

3)該校共有600名學生參與捐款,請你估計該校學生捐款不少于15元的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(閱讀理解)

截長補短法,是初中數學兒何題中一種輸助線的添加方法,截長就是在長邊上載取一條線段與某一短邊相等,補短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.

1)如圖1,ABC是等邊三角形,點D是邊BC下方一點,∠BDC120°,探索線段DA、DB、DC之間的數量關系.

解題思路:延長DC到點E,使CEBD.連接AE,根據∠BAC+∠BDC180°,可證∠ABD=∠ACE,易證得ABDACE,得出ADE是等邊三角形,所以ADDE,從而探尋線段DADB、DC之間的數量關系.

根據上述解題思路,請直接寫出DADB、DC之間的數量關系是___________

(拓展延伸)

2)如圖2,在RtABC中,∠BAC90°,ABAC.若點D是邊BC下方一點,∠BDC90°,探索線段DA、DB、DC之間的數量關系,并說明理由;

(知識應用)

3)如圖3,一副三角尺斜邊長都為14cm,把斜邊重疊擺放在一起,則兩塊三角尺的直角項點之間的距離PQ的長為________cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,過點BBDAC,垂足為D,若D是邊AC的中點,

1)求證:ABC是等邊三角形;

2)在線段BD上求作點E,使得CE2DE(要求:尺規作圖,不寫畫法,保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)

【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設反比例函數的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規則的圖形的面積表示成多個規則圖形的面積之和是解答本題的關鍵.

型】解答
束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,DABC的邊BA延長線上一點,且ADAB,E是邊AC上一點,且DEBC.求證:∠DEA=∠C

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91精品国产一区二区 | 一区二区三区久久 | 亚洲精品电影在线观看 | 欧美影 | 一区二区精品 | 天天操天天碰 | 99视频精品| 亚洲欧美精品一区 | 国精日本亚洲欧州国产中文久久 | 亚洲午夜视频 | 免费av一区 | 九九国产| 日韩三级电影视频 | 免费观看毛片 | 综合99| 91 在线观看 | 国产精品一二三区 | 91久久精品国产91久久性色tv | 久久国产精品一区二区 | 色综合欧美 | 欧美综合久久 | 狠狠操狠狠摸 | 中文字幕亚洲字幕一区二区 | 91在线看视频 | 精品国模一区二区三区欧美 | 日本h视频在线观看 | 国产一区二区三区精品久久久 | 久久人人爽人人爽人人片av高清 | 色婷婷一区二区 | 亚洲精品一区二区三区中文字幕 | 日韩毛片免费视频一级特黄 | 日韩美女国产精品 | 7777av | 欧美一区三区三区高中清蜜桃 | 99精品欧美一区二区三区综合在线 | 国产精品免费在线 | 欧美午夜精品久久久久免费视 | 精品国产一区二区三区性色av | 欧洲毛片 | 国产精品久久九九 | 国产区亚洲 |