日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
11.如圖,直線PA∥QB,∠PAB與∠QBA的平分線交于點C,過點C作一條直線l與兩直線PA,QB分別相交于點D,E.
(1)如圖①,當直線l與PA垂直時,求證:AD+BE=AB;
(2)如圖②,當直線l與PA不垂直且交于點D,E都在AB同側時,CD中的結論是否成立?如果成立,請證明:如不成立,請說明理由.
(3)當直線l與PA不垂直且交于點D,E都在AB異側時,(1)中的結論是否仍然成立?如果成立,請證明; 如果不成立,請寫出AD,BE,AB之間的數量關系(不用證明).

分析 (1)根據各線段之間的長度,先猜想AD+BE=AB;
(2)在AB上截取AG=AD,連接CG,利用三角形全等的判定定理可判斷出AD=AG.同理可證BG=BE,即AD+BE=AB;
(3)畫出直線l與直線MA不垂直且交點D、E在AB的異側時的圖形,分兩種情況討論:①當點D在射線AM上、點E在射線BN的反向延長線上時;②點D在射線AM的反向延長線上,點E在射線BN上時;得到AD,BE,AB之間的關系.

解答 (1)證明:如圖1,過C作CF⊥AB于F,
∵AC平分∠PAB,BC平分∠QBA
,∴∠1=∠2,∠3=∠4,
∵l⊥AP,PA∥BQ,
∴∠EDA=∠DEB=90°,
∴∠1+∠2+∠3+∠4=180°,
∴∠1+∠3=90°,
∴∠ACB=90°,
在△CDA與△CFA中,
$\left\{\begin{array}{l}{∠1=∠2}\\{∠ADC=∠CFA=90°}\\{AC=AC}\end{array}\right.$,
∴△ACD≌△ACF,
∴AD=AF,
同理BF=BE,
∵AB=AF+BF,
∴AB=AD+BE;

(2)如圖2,在AB上截取AG=AD,連接CG.
∵AC平分∠MAB,
∴∠DAC=∠CAB,
在△ADC與△AGC中,
$\left\{\begin{array}{l}{AD=AG}\\{∠DAC=∠GAC}\\{AC=AC}\end{array}\right.$,
∴△ADC≌△AGC(SAS),
∴∠DCA=∠ACG,
∵AP∥BQ,
∴∠DAC+∠CAB+∠GBC+∠CBE=180°,
∵∠DAC=∠CAB,∠GBC=∠CBE,
∴∠CAB+∠GBC=90°,
∴∠ACB=90°即∠ACG+∠GCB=90°,
∵∠DCA+∠ACG+∠GCB+∠BCE=180°,
∴∠DCA+∠BCE=90°,
∴∠GCB=∠ECB,
在△BGC與△BEC中,
$\left\{\begin{array}{l}{∠GCB=∠ECB}\\{BC=BC}\\{∠ABC=∠CBE}\end{array}\right.$,
∴△BGC≌△BEC,
∴BG=BE,
∴AD+BE=AG+BG,
∴AD+BE=AB;

(3)不成立.
存在,當點D在射線AP上、點E在射線BN的反向延長線上時(如圖3),AD-BE=AB;
當點D在射線AP的反向延長線上,點E在射線BN上時(如圖4),BE-AD=AB.

點評 本題考查了全等三角形的判定和性質,平行線的性質,角平分線的定義,正確的作出輔助線是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:選擇題

1.下列圖形中是在同一時刻太陽光下形成的影子是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

2.若點A(-3,7),則點A關于y軸對稱點B的坐標為(3,7).

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

19.下列圖形中,不是軸對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

6.如圖,在△ABC中,∠C=90°,∠B=60°,AC=6,斜邊AB的垂直平分線交AB于點E,交AC于點D,則CD的長為2.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

16.如果ab>0,a+b<0,那么下面各式:①$\sqrt{\frac{a}{b}}$=$\frac{\sqrt{a}}{\sqrt{b}}$,②$\sqrt{\frac{a}{b}}$$•\sqrt{\frac{b}{a}}$=1,③$\sqrt{ab}$÷$\sqrt{\frac{a}{b}}$=-b,其中正確的是②③(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

3.如圖,把△ABC繞點C按順時針方向旋轉35°,得到△A′B′C,A′B′交AC于點D.若
∠A′DC=90°,則∠A的度數為(  )
A.35°B.45°C.55°D.65°

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.如圖,已知四邊形ABCD中,AB=2cm,BC=4cm,CD=5cm,AD=$\sqrt{5}$cm,∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

1.列方程解應用題:七、八年級學生分別到雷鋒、毛澤東紀念館參觀,共590人,到毛澤東紀念館的人數是到雷鋒紀念館人數的2倍多56人,到雷鋒紀念館參觀的人數有多少人?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品日韩在线 | 久久国产视频网 | 日韩中文在线观看 | 中文字幕精品一区二区三区精品 | √新版天堂资源在线资源 | 日韩欧美综合 | 国产一区二区免费电影 | 一区二区日韩精品 | 国产在线观看 | 国产精品久久在线观看 | 欧美日韩一级视频 | 国产精品视频区 | 日韩免费av一区二区 | 日韩久久一区二区 | 久久精品一区二区三区不卡牛牛 | 婷婷亚洲五月 | 久久久久久影院 | 欧美一区在线视频 | 精品视频在线免费观看 | 日本精品一区二区 | 成人欧美一区二区三区黑人孕妇 | 国产欧美日韩综合精品一区二区 | 久久久精品视频在线观看 | 日本成年人免费网站 | 中文字幕三级在线看午夜 | yy6080久久伦理一区二区 | 精品国产乱码久久久久久丨区2区 | 欧美精品xx| 欧美日韩天堂 | 久久久久.com | 黄色a在线观看 | 日韩免费区 | 北条麻妃99精品青青久久 | 日韩在线视频播放 | 精品国产一区二区三区在线观看 | 成人看片免费 | 成人福利网 | 伊人影院在线观看 | 成人精品久久久 | 91网站免费| 精品少妇一区二区三区在线播放 |