【題目】在四邊形ABCD中,AB=BC,對角線BD平分,P是BD上一點,過P作PM⊥AD于點M,PN⊥CD于點N.
(1)求證: ;
(2)若,求證:四邊形MPND是正方形。
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)根據角平分線的性質和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.
試題解析:(1)∵對角線BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四邊形MPND是矩形,
∠ADB=∠CDB,
∴∠ADB=45°
∴PM=MD,
∴四邊形MPND是正方形.
科目:初中數學 來源: 題型:
【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數;
(2)求證:CG平分OCD;
(3)當O為多少度時,CD平分OCF,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】x軸將坐標平面分為兩部分,x軸上方的點的縱坐標為正數,x軸下方的點的縱坐標為______;y軸把坐標平面分為兩部分,y軸左側的點的橫坐標為_____,y軸右側的點的橫坐標為_____.規定原點坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠A=96°,D是BC延長線上的一點,∠ABC與∠ACD(△ACB的外角)的平分線交于A1點,則∠A1=_______度;如果∠A=α,按以上的方法依次作出∠BA2C,∠BA3C…∠BAnC(n為正整數),則∠An=_______度(用含α的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關系,并予以說明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com