【題目】在△ABC中,AB=5,AC=8,BC=7,點D是BC上一動點,DE⊥AB于E,DF⊥AC于F,線段EF的最小值為_____.
【答案】
【解析】
如圖,作CM⊥AB于M,AN⊥BC于N.連接AD,OE,OF.設AM=x,則BM=5﹣x.根據,可得
,解得x=4,推出∠EAF=60°,由A,E,D,F四點共圓,推出當⊙O的直徑最小時,EF的長最小,根據垂線段最短可知:當AD與AN重合時,AD的值最小,由此即可解決問題.
解:如圖,作CM⊥AB于M,AN⊥BC于N.連接AD,OE,OF.設AM=x,則BM=5﹣x.
∵CM2=AC2﹣AM2=BC2﹣BM2,
∴82﹣x2=72﹣(5﹣x)2,
解得x=4,
∴AM=4,AC=2AM,
∴∠ACM=30°,∠CAM=60°,CM=AM=4
,
∵S△ABC=BCAN=
ABCM,
∴AN=,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
∴A,E,D,F四點共圓,
∴當⊙O的直徑最小時,EF的長最小,
根據垂線段最短可知:當AD與AN重合時,AD的值最小,AD的最小值為,
此時OE=OF=,EF=2OEcos30°=
,
∴EF的最小值為,
故答案為.
科目:初中數學 來源: 題型:
【題目】如圖,已知AE與BF相交于點D,AB⊥AE,垂足為點A,EF⊥AE,垂足為點E,點C在AD上,連接BC,要計算A、B兩地的距離,甲、乙、丙、丁四組同學分別測量了部分線段的長度和角的度數,各組分別得到以下數據:
甲:AC、∠ACB;
乙:EF、DE、AD;
丙:AD、DE和∠DCB;
丁:CD、∠ABC、∠ADB.
其中能求得A、B兩地距離的數據有( )
A.甲、乙兩組B.丙、丁兩組
C.甲、乙、丙三組D.甲、乙、丁三組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
與
軸、
軸分別交于點
,
,拋物線
經過點
,將點
向右平移5個單位長度,得到點
.
(1)求點的坐標;
(2)求拋物線的對稱軸;
(3)若拋物線與線段恰有一個公共點,結合函數圖象,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種商品每天的銷售利潤元,銷售單價
元,間滿足函數關系式:
,其圖象如圖所示.
(1)銷售單價為多少元時,該種商品每天的銷售利潤最大? 最大利潤為多少元?
(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21 元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+m的圖象經過點P(4,5),與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,且S△PAB=10.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點Q使得△PAQ和△PBQ的面積相等?若存在,求出Q點的坐標,若不存在,請說明理由;
(3)過A、P、C三點的圓與拋物線交于另一點D,求出D點坐標及四邊形PACD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著信息技術的迅猛發展,人們去商場購物的支付方式更加多樣、便捷.某校數學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現將調查結果進行統計并繪制成如下兩幅不完整的統計圖,請結合圖中所給的信息解答下列問題:
(1)這次活動共調查了 人;在扇形統計圖中,表示“支付寶”支付的扇形圓心角的度數為 ;
(2)將條形統計圖補充完整.觀察此圖,支付方式的“眾數”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 ,是一元二次方程
的兩個實數根,且
,拋物線
的圖象經過
.
(1)求拋物線的解析式;
(2)設拋物線與軸的另一個交的為
,拋物線的頂點為
,求
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一商品銷售某種商品,平均每天可售出20件,每件盈利50元.為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經過一段時間銷售,發現銷售單價每降低1元,平均每天可多售出2件.
(1)若每件商品降價2元,則平均每天可售出______件;
(2)當每件商品降價多少元時,該商品每天的銷售利潤為1600元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com