分析 如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.
解答 解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,
此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=90°,
∵∠OP1B=90°,
∴OP1∥AC
∵AO=OB,
∴P1C=P1B,
∴OP1=$\frac{1}{2}$AC=4,
∴P1Q1最小值為OP1-OQ1=1,
如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經過圓心,經過圓心的弦最長,
P2Q2最大值=5+3=8,
∴PQ長的最大值與最小值的和是9.
故答案為:9.
點評 本題考查切線的性質、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考常考題型.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1cm,2cm,4cm | B. | 3cm,3cm,6cm | C. | 7cm,7cm,12cm | D. | 3cm,6cm,10cm |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com