日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2000•武漢)如圖,⊙O1與⊙O2相交于A、B兩點,AC是⊙O1的切線且交⊙O2于點C,AD是⊙O2的切線且交⊙O1于點D.連接DB、CB、AB.
(1)求證:AB2=BC•BD;
(2)延長CB交⊙O1于點E,延長DB交⊙O2于點F.求證:△AEC≌△ADF.

【答案】分析:(1)將乘積式化為比例式,然后證線段所在的三角形全等,即證△ABC∽△DBA;
(2)所求的兩個三角形中,根據圓周角定理即可得到兩組相等的對應角,關鍵是找出一組相等的對應邊;連接DE,證∠AED=∠ADE即可;易知∠ADE=∠ABE=∠BAC+∠C,而∠AED=∠ABF(圓內接四邊形的外角等于內對角)=∠BDA+∠BAD;觀察上述兩式,∠BAC、∠ADB和∠C、∠ABF都是(1)得到的相似三角形的對應角,由此可證得∠AED=∠ADE,即可得到AE=AD,由此得證.
解答:證明:(1)∵AC為⊙O1的切線,
∴∠BAC=∠D,同理∠DAB=∠C;(2分)
∴△ABC∽△DBA,∴(3分)
即AB2=BC•BD;(4分)

(2)連接ED;
則∠ADE=∠ABE=∠BAC+∠C,∠AED=∠ABF=∠BAD+∠ADB;
由(1)知△ABC∽△DBA,
∴∠BAC+∠C=∠BAD+∠ADB;
∴∠ADE=∠AED,∴AE=AD(7分)
而∠AEB=∠ADB,∠C=∠F,
∴△AEC≌△ADF.(8分)
點評:此題主要考查了相似三角形的判定和性質、弦切角定理、圓內接四邊形的性質以及全等三角形的判定等知識的綜合應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2000年全國中考數學試題匯編《圓》(07)(解析版) 題型:解答題

(2000•武漢)如圖,⊙O1與⊙O2相交于A、B兩點,AC是⊙O1的切線且交⊙O2于點C,AD是⊙O2的切線且交⊙O1于點D.連接DB、CB、AB.
(1)求證:AB2=BC•BD;
(2)延長CB交⊙O1于點E,延長DB交⊙O2于點F.求證:△AEC≌△ADF.

查看答案和解析>>

科目:初中數學 來源:2000年全國中考數學試題匯編《圓》(01)(解析版) 題型:選擇題

(2000•武漢)如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一點O為圓心作⊙O與AB相切于E,與AC相切于C,又⊙O與BC的另一交點為D,則線段BD的長為( )

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2000年全國中考數學試題匯編《四邊形》(02)(解析版) 題型:填空題

(2000•武漢)如圖,在?ABCD中,AB=,AD=,BD⊥AD,以BD為直徑的⊙O交AB于E,交CD于F,則?ABCD被⊙O所截得陰影部分的面積是   

查看答案和解析>>

科目:初中數學 來源:2000年湖北省武漢市中考數學試卷(解析版) 題型:填空題

(2000•武漢)如圖,在?ABCD中,AB=,AD=,BD⊥AD,以BD為直徑的⊙O交AB于E,交CD于F,則?ABCD被⊙O所截得陰影部分的面積是   

查看答案和解析>>

科目:初中數學 來源:2000年湖北省武漢市中考數學試卷(解析版) 題型:選擇題

(2000•武漢)如圖,A、C是函數y=的圖象上的任意兩點,過A作x軸的垂線,垂足為B,過C作y軸的垂線,垂足為D,記Rt△AOB的面積為S1,Rt△COD的面積為S2,則( )

A.S1>S2
B.S1<S2
C.S1=S2
D.S1和S2的大小關系不能確定

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产123 | 中文字幕亚洲二区 | 国产精品永久免费 | 成人精品视频在线观看 | 久久精品成人免费视频 | 亚洲视频精品一区 | 中文字幕在线不卡 | av成人一区二区 | 九九亚洲 | 国产小视频在线观看 | 一区二区三区在线播放视频 | 欧美激情小视频 | 91在线精品秘密一区二区 | 蜜桃在线视频 | 日韩精品一区二区三区在线观看 | 日韩一区在线视频 | 日韩av电影在线播放 | 一本之道高清码 | 国产成人久久精品77777 | 成人一区二区在线 | 狠狠躁夜夜躁人人爽视频 | 一区二区三区视频免费观看 | 欧美伦理一区二区 | 国产精品一区二区三区99 | 亚洲视频一区二区三区 | 国产中文在线 | 欧洲一区二区三区免费视频 | 日本毛片视频 | 中文字幕影院 | 午夜tv免费观看 | 国产精品一区二区无线 | 日本久久二区 | 欧美不卡激情三级在线观看 | 久久精品国产精品亚洲 | 欧美怡红院视频一区二区三区 | 亚洲日韩中文字幕 | 中文一区二区 | 久产久精品 | 久草成人| 91久久国产综合久久 | 日韩中文一区二区三区 |